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Glossary 

 

 

The terms defined in the glossary will be highlighted by an asterisk (*) when first used 

in the text. 

 

 Allele richness: is a measure of the number of alleles that takes into account variations 

in sample size. 

 

 Bottleneck: drastic reduction of the effective population size* of a population. 

 

 Complete lineage sorting: is the segregation of alleles/haplotypes among populations. 

 

 Effective population size (Ne): is the number of breeders in an idealized population (in 

Hardy-Weinberg equilibrium*) that would show the same amount of genetic drift* and 

inbreeding than the population under consideration. 

 

 Founder event: also called founder effect, occurs when a small group of individuals 

become isolated from the rest of the population. 

 

 Genetic drift: random variation of allele frequencies. 

 

 Haplotypic diversity: it measures the probability that two randomly chosen sequences 

in a population will be the same. 

 

 Hardy-Weinberg Equilibrium (HWE): this principle states that the genetic variation of 

a population will remain constant from one generation to the next in the absence of 

selection, mutation, migration and genetic drift*. It assumes that there are panmixia 

and non-overlapping generations.  
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 Linkage equilibrium: random associations of alleles. 

 

 Nucleotide diversity: it measures the average proportion of nucleotide differences 

between all pairs of sequences within a population. 

 

 Null allele: a null allele (at a microsatellite locus) is an allele which is present in a 

sample but which consistently fails to amplify during polymerase chain reaction 

(PCR). Amplification of the allele can be inhibited because of a mutation in the primer 

binding region. 

 

 Private alleles: alleles that are only found in one population. 

 

 Wahlund effect: it is a reduction in the overall heterozygosity as a result of population 

structure. 
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1) Interaction between social, ecological and genetic structures 

Biodiversity is not spread homogeneously on earth. Its distribution is driven by 

physical factors such as climatic or environmental conditions and biological factors such as 

the presence of competitors, conspecifics or prey (Lomolino et al. 2006). As a result of this 

non-random distribution, individuals and their conspecifics do not have the same chance of 

encounter, to interact or reproduce with each other. At a fine-scale level, individuals do not 

interact randomly with each other. Groups of individuals may tend to form aggregations due 

to the availability of food, shelter, and resting areas. Additionally, they can also form social 

groups where individuals actively seek or maintain proximity with each other or will receive 

benefits from living with others (Whitehead 2008a). Social structure describes the patterns of 

these interactions (or associations) between individuals (Hinde 1976) and details the number 

and characteristics of the individuals in a group as well as the duration and the nature of their 

interactions. At fine to large scales, as resources (i.e. habitat and diet) are not evenly 

distributed, they may be used differently by individuals, resulting in ecological structure. In 

addition, individuals do not always mate randomly with each other, which creates genetic 

structure. They can form populations that are sets of individuals that preferentially breed 

among themselves than with other individuals (“the evolutionary definition of a population”, 

Waples & Gaggiotti 2006).  

 

In non-social animal species, ecological and genetic structures may influence each 

other. In social species, such as large mammals, social, ecological and genetic structures are 

strongly interlinked and may interact with each other. First, social structure can match 

ecological structure if in a social group, foraging techniques are transmitted socially. This was 

recorded across different species, including sperm whales, killer whales or pilot whales, 

where individuals within the same social group demonstrated more similar ecology than 

individuals from different groups (Marcoux et al. 2007; de Stephanis et al. 2008b; Riesch et 

al. 2012). This may reflect differences in cultural traditions of habitat use and food choice. 

Likewise, bottlenose dolphins in Moreton Bay, which have different hunting strategies 

(interacting or not with trawl fisheries) have formed two distinct social clusters (Chilvers & 
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Corkeron 2001). In turn, if individuals preferentially interact with individuals having similar 

ecology, ecological behavior might shape social structure. For instance, when trawl fisheries 

were banned in Moreton Bay, trawler and non-trawler bottlenose dolphins no longer formed 

two separate social clusters, highlighting the possible effect of the disappearance of ecological 

differences on social structure  (Ansmann et al. 2012a; Cantor & Whitehead 2013).  

Social structure can also influence patterns of gene flow (see review in Sugg et al. 

1996; Storz 1999). In particular, low dispersal or sex-biased dispersal, mating systems such as 

polygyny can lead to genetic differentiation among social groups (Storz 1999). Populations 

can be composed by sub-groups of varying degrees of relatedness or co-ancestry, which are 

important to take into account in population genetics whose models are based on random 

mating (Sugg et al. 1996). For instance, red howler monkeys had a polygynous mating system 

and moderate female philopatry which created genetic differentiation among adjacent groups 

(Pope 1992). Female matrilocality or philopatry can lead to genetic differentiation among 

groups while mating can still be random when males disperse (e.g. for sheep, Coltman et al. 

2003). Similarly, in matrilineal pilot whale or killer whale groups, although both males and 

females stay in their natal groups, males do not generally mate with females inside their group 

which leads to gene flow among groups (Amos et al. 1993; Pilot et al. 2010). Nevertheless, 

genetic structure among populations or ecotypes of killer whales may be strengthened by the 

kin structure of social groups (Pilot et al. 2010).  

Social structure most likely influenced genetic structure along with others factors such 

as geographic or ecological barriers to gene flow. For instance, a combination of distinct 

social structure and roosting ecology may lead to different patterns of genetic structure among 

seven bats species inhabiting an undisturbed ancient rainforest, therefore controlling for 

historical processes (Rossiter et al. 2012). Ecological structure, in terms of variation of 

habitats or diet may lead to genetic structure. For instance, patterns of genetic divergence in 

highly mobile carnivores such as wolves and coyotes were correlated with differences in 

habitats and/or diet (Sacks et al. 2004; Sacks et al. 2005; Pilot et al. 2006; Musiani et al. 

2007; Sacks et al. 2008; Pilot et al. 2012). Individuals may have a higher tendency to disperse 

in familiar habitats (i.e. natal habitat dispersal, Davis & Stamps 2004) where they may be able 

to use foraging techniques learned during juvenile life or target familiar prey, which will 

likely increase their foraging success and thus their fitness. Social structure and long-term 

mother-calf bonds may strengthen this pattern (Sacks et al. 2005; Musiani et al. 2007; Pilot et 
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al. 2010). For instance, killer whale genetic differentiation between offshore, transient and 

resident ecotypes may be maintained by learned foraging techniques in the matrilineal group 

and tight social bonds (Hoelzel et al. 1998a; Hoelzel et al. 2007; Pilot et al. 2010; Riesch et 

al. 2012). More generally, long-term niche specializations
1
, in terms of habitats or diet, 

among groups of individuals, can facilitate the evolution and maintenance of genetic 

divergence both for non-social and social species (Smith & Skúlason 1996; Bolnick et al. 

2003; Knudsen et al. 2010; Siwertsson et al. 2013). 

 

Social, ecological and genetic structures are therefore tightly inter-connected. 

Although often rarely studied together, combining these approaches is essential for a global 

understanding of the structuring patterns of social species. Different processes are creating 

and maintaining these different levels of structure in the animal kingdom. This introduction 

chapter gives an overview of the mechanisms involved. The importance of studying the 

structure of populations for conservation purposes is highlighted. Then, the context of the 

study and its objectives are presented and the organization of the manuscript is outlined.  

 

2) Drivers of structure 

Interactions between intrinsic behavioral factors and extrinsic environmental factors 

shape the different levels of structure. I will discuss possible mechanisms that influence 

sociality, ecological structure and barriers to gene flow. 

 

a) Social structure 

On a fine-scale, individuals usually associate non-randomly with other individuals. 

They may preferentially associate with other individuals that share similar traits, a 

phenomenon which is called homophily or assortativity. These associations could be 

according to age (e.g. Blumstein 2012; Hauver et al. 2013), sex (reviewed by Ruckstuhl 

                                                 
1
 We define a niche (or an ecological) specialization as the act of exploiting only a limited fraction of 

the range of available feeding or habitat resources (Bolnick et al. 2003). 
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2007), morphological traits (e.g. body length, Croft et al. 2005; Mourier et al. 2012), behavior 

(e.g. Mann et al. 2012), kinship (e.g. Holekamp et al. 1997; Archie et al. 2006), reproductive 

state (e.g. Sundaresan et al. 2007; Möller & Harcourt 2008), previous familiarity (Garroway 

et al. 2013) or personality (e.g. Weinstein & Capitanio 2008; Croft et al. 2009; Aplin et al. 

2013). These relationships among individuals likely reveal behavioral strategies that should 

maximize fitness (van Schaik 1989). Possible advantages of living in groups include 

decreased predation risks, cooperation to catch and defend resources, transfer of information 

and care for another. On the other hand, disadvantages include competition for resources, 

being more conspicuous and increased aggression rates (see detailed review in Krause & 

Ruxton 2002). Individuals tend to form groups when benefits outweigh the costs. This trade-

off is strongly influenced by predation risks and the availability of resources including both 

food and access to mates (Alexander 1974; Rubenstein & Wrangham 1986). For instance, 

individuals tend to form larger groups when  predation risks are high (e.g. Wrona & Dixon 

1991; Hill & Lee 1998) or when food is abundant (e.g. Chapman et al. 1995; Lusseau et al. 

2004; Smith et al. 2008). However, additional factors such as protection of young and defense 

of territories may explain group sizes (e.g. for females lions, Packer et al. 1990). The fitness 

costs and benefits can also vary according to gender because of different potential rates of 

reproduction between males and females. In mammals, female sociality is influenced by food 

resources and protection of young while males compete or cooperate for access to females 

(Trivers 1972; Emlen & Oring 1977; Wrangham 1980; Clutton-Brock & Parker 1992). 

 

Social dynamics can evolve in response to ecological factors. Variations in food 

availability can modify association patterns within a population. For instance, female bonobos 

showed cyclical changes in their association patterns according to the availability of 

resources. When food was abundant, association strength was lower than when food was 

scarce (Henzi et al. 2009). Social cohesion of resident killer whales and African elephants 

were found to be higher in seasons with high food abundance (Wittemyer et al. 2005, Foster 

et al. 2012). Social structure can also be variable for a given species according to the 

environment. Guppies from high predation areas had stronger and longer social ties than those 

from populations from areas where the predation risk was low (Kelley et al. 2011).  Spinner 

dolphins in the Main Hawaii islands have a typical fission-fusion social structure (where 

although some associations can be long-lasting, association patterns are mainly dynamic and 
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have an hourly or daily turn-over) while individuals in a remote Hawaiian atoll formed a 

society with stable bonds. This stable social structure may be explained by the isolation of this 

atoll, and the low availability of resting places, separated by large open areas of pelagic 

waters with high predation risks (Karczmarski et al. 2005). The number of resting sites (i.e. 

roosting leaves) seemed also to influence leaf roosting bat social structure (Chaverri 2010). 

 

b) Ecological structure 

Ecological structure can arise because of environmental characteristics and behavioral 

processes. Spatially segregated individuals may face different environmental conditions and 

thus have distinct foraging behavior or diet (e.g. marine and freshwater otters, Kruuk 1995). 

In addition, resources between individuals may be partitioned to limit intra-specific 

competition and may be shaped by frequency dependent selection (e.g. Roughgarden 1972; 

Skúlason & Smith 1995; Bolnick 2001). Already existing diversities in habitats and resources 

or newly available habitats, created by changes in environmental conditions or the 

colonization of new territories, might lead to niche specializations (e.g. Smith & Skúlason 

1996; Hewitt 2000; Losos & Ricklefs 2009). Habitat release during postglacial periods has 

opened up ecological opportunities. For instance, ecotype differentiation between benthic and 

limnetic sticklebacks in post-glacial lakes likely resulted from double invasion events which 

may be linked to two separate marine submergence events (Taylor & McPhail 2000). Key 

innovations and extinction of antagonists might also enable individuals to exploit new 

resources (reviewed in Yoder et al. 2010). Individual behavior can also lead to intra-specific 

ecological variation. For instance, site fidelity to particular feeding or breeding grounds, 

which may be imprinted (e.g. bluefin tuna) or transmitted through calf’s early maternal 

experience (e.g. baleen whales) can create ecological structure (Rooker et al. 2008a; Rooker 

et al. 2008b; Valenzuela et al. 2009; Witteveen et al. 2009). In social species, ecological 

specializations can be maintained by vertical learning during juvenile life (e.g. Krützen et al. 

2005; Sargeant & Mann 2009). Finally, niche specializations may arise as a result of 

individual plasticity in both behavioral and morphological traits and could be maintained by 

individual stability in feeding behavior (Bolnick et al. 2003; Knudsen et al. 2010). In turn, 

variations in morphological traits associated with feeding can also be the results of 

adaptations to distinct resources (Smith & Skúlason 1996). 
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c) Genetic structure 

Barriers to gene flow may arise as a result of a complex interaction between 

environmental, historical and behavioral processes. First, they can evolve in allopatry (Mayr 

1942) when groups of individuals are isolated in discontinuous regions separated by 

mountains, water masses, habitats of poor quality or human constructions, restricting dispersal 

(e.g. Piertney et al. 1998; Gerlach & Musolf 2000; Funk et al. 2005). However, genetic 

structure may also arise when there is no obvious geographic barrier to gene flow. Distance 

can create genetic differentiation as the majority of individuals usually disperse in a range that 

is smaller than the whole species range (Slatkin 1993). In addition, past changes in 

environmental conditions such as Pleistocene climatic oscillations have shaped the genetic 

structure and diversity of many taxa. In the Northern Hemisphere, temperate species were 

isolated in refugia during glacial periods and expanded during interglacial periods, which 

affected genetic diversity patterns (see review in Hewitt 1996, 2000). Moreover, 

environmental variations such as cryptic or complex habitat breaks, or environmental 

characteristics such as climate or particular oceanographic features (e.g. currents, salinity and 

temperature) can reduce dispersal and may explain genetic structure at large and fine scales 

(Rueness et al. 2003; Guillot et al. 2005; Jorgensen et al. 2005; Coulon et al. 2006; Galindo et 

al. 2006; Geffen et al. 2007; Gaggiotti et al. 2009; Selkoe et al. 2010). It has been 

demonstrated theoretically that environmental gradients may facilitate genetic divergence 

(Doebeli & Dieckmann 2003). As detailed in the first part of the introduction, a combination 

of ecology, in particular foraging specializations, and social behavior, leading to philopatry or 

natal-biased dispersal, may explain genetic divergence of highly mobile vertebrates (e.g. 

coyotes, wolves or killer whales, Sacks et al. 2005; Hoelzel et al. 2007; Musiani et al. 2007; 

Foote et al. 2009). Natal-biased dispersal patterns hold for both males and females in some 

species, but in most mammal species dispersal is male biased. Female fitness is constrained 

by foraging resources, while males tend to maximize their access to females (reviewed in 

Greenwood 1980; Handley & Perrin 2007).  

Genetic isolation between populations with limited gene flow can be enhanced by 

genetic drift* or by selective pressures. Natural selection can facilitate the evolution of traits 

adapted to particular environments which will confer higher fitness to individuals in their 

local habitats (i.e. a phenomenon called “local adaptation”, Kawecki & Ebert 2004). 
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Ultimately, ecological speciation occurs when reproductive isolation evolves as a 

consequence of these local adaptations (Schluter 2001; Rundle & Nosil 2005). 

 

Studying these different levels of structure can reveal how ecology and evolution 

shaped the current patterns of biodiversity and is therefore of major interest in fundamental 

and theoretical perspectives. In addition, these studies can also have very practical 

implications for conservation. 

 

 

3) Conservation implications 

 

A fundamental question in conservation biology is how to delineate conservation units 

to maintain the adaptive potential of a species and its persistence. It is well accepted that the 

conservation of many distinct populations will contribute to maximizing evolutionary 

potential while minimizing the risk of extinction. In addition, a comprehensive understanding 

of the structure of populations is particularly important for conservation. However, there is a 

lack of current consensus on which type of structure and time scales are relevant to 

management.  

Genetic structure had a major role in conservation plans. Ecological structure has also 

been included, but to a lesser extent. Two units have mainly been considered: Evolutionary 

Significant Units (ESU) and Managements Units (MU). ESU have been defined several times 

in two different ways involving only genetics for the first definition (neutral diversity) and 

both genetic and ecology (adaptive variation) for the second. Moritz (1994, 2002) defined 

them, using only genetics, as units arising from “historical population structure rather than 

current adaptation that are reciprocally monophyletic for mitochondrial DNA and show 

significant divergence of allele frequencies at nuclear loci”. In contrast, ESU, according to 

Crandall et al. (2000) are defined when both “ecological and genetic exchangeability” are 

rejected (i.e. when there is respectively population differentiation caused by genetic drift and 
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selection and evidence of limited gene flow between populations). They argued that both 

ecological data and genetic variation of adaptive significance should be used to define ESU. 

Management units have been defined by Moritz (1994) as “population units with 

significant divergence of allele frequencies at nuclear or mitochondrial loci, regardless of the 

phylogenetic distinctiveness of the alleles”. This definition has often been interpreted as 

rejecting panmixia between the units, which was criticized as not being reliable or sufficient 

(Taylor & Dizon 1999; Palsbøll et al. 2007). Palsbøll et al. (2007) emphasized that 

management units should correspond to demographically independent populations whose 

population dynamics are driven by local birth and mortality rates rather than just rejecting 

panmixia. Current dispersal is the parameter of interest. An analytical framework that will 

integrate and estimate both population genetics and demographic parameters is needed 

(Palsbøll et al. 2007). However, there is also no consensus on the level at which populations 

become demographically correlated (Waples & Gaggiotti 2006; Palsbøll et al. 2007).  

Another issue related to the genetic delineation of management units is that the 

absence of population genetic structure at neutral loci (e.g. microsatellites or mitochondrial 

DNA) does not mean that there is no adaptive divergence (Thibert-Plante & Hendry 2010). 

Divergence could possibly be too recent to be detected or masked by a population expansion 

(discussed for cetaceans in ASCOBANS 2007). Classical population genetics may provide 

information on evolutionary rather than contemporary time scales which are useful for 

conservation (Pearse & Crandall 2004).  Many authors emphasized that integrating ecological 

data with genetics is essential when trying to determine if populations are demographically 

independent (Waples et al. 2008; Olsen et al. 2014). In particular, combining ecological and 

genetic approaches may be essential for highly mobile and continuously distributed species, 

such as in the marine environment where defining population structure (i.e. genetic and/or 

ecological structures) can be challenging (Martien & Taylor 2003; Waples et al. 2008). For 

instance, marine turtles have a complex population structure primarily linked to different 

migration patterns according to life-stage and sex. Marine turtle specialists do not agree on 

whether management units should be based on nesting sites, geographical regions or genetic 

stocks. Thus, Wallace et al. (2010) proposed to integrate these three levels. A combination of 

tools: molecular markers, satellite telemetry and environmental data can provide 

complementary information on population structure and connectivity for these species 

(Godley et al. 2010). School sharks are an example of a species whose management units 
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were defined with both genetic and ecological data. While genetics indicated weak or no 

genetic differentiation between New-Zealand and Australia, tagging data showed low rates of 

movements between areas. Two management units have thus been defined (see references and 

personal communications in Waples et al. 2008). It should be noted that political and country 

boundaries, although not biologically meaningful, may also have an important role in 

management plans and decisions (Waples et al. 2008). 

Ecological tracers could be an interesting tool to reveal ecological structure (i.e. 

differences in diet or habitat use). They provide information on population structure over 

shorter time scales than neutral genetic markers, which could be more relevant for 

management (see discussion on cetacean population structure in ASCOBANS 2007). For 

instance, while a single stock of weakfish was defined for the eastern coastal waters of the 

United States based on genetic results; stable isotopes and trace elements indicated significant 

population sub-structure and natal homing (Thorrold et al. 2001). Thus, Thorrold et al. (2001) 

recommend to take the spatial structure and spawning site fidelity into account in fishery 

management plans and Marine Protected Area designations. 

Understanding social structure can also be relevant for the management of social 

species. Different social clusters, with distinct habitat use or feeding techniques, can have 

contrasting foraging success, depending on environmental conditions (e.g. clans of sperm 

whales during ‘El Niño/Southern Oscillation’, Whitehead & Rendell 2004), which could 

affect their reproductive success and fitness. Thus, it may be essential to preserve different 

social clusters with their own behavioral/cultural traits. In addition, social knowledge and 

traditions, held by the oldest individuals in some social mammals such as killer whales and 

elephants, can be altered by poaching (McComb et al. 2001; Williams & Lusseau 2006). A 

disrupted social structure can have negative fitness impact (McComb et al. 2001; Gobush et 

al. 2008). Whitehead et al. (2004) argued that for some species, such as whales, dolphins and 

elephants, it is important to preserve cultural variations and that cultural traits should be 

included in the definition of conservation units. In addition, modeling work showed that it is 

important to take social structure into account when evaluating the viability of a population as 

social organization may have an impact on the number of breeders (Vucetich et al. 1997).  
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4) Study model: bottlenose dolphin and research questions 

a) Studying cetacean population structure: interest and challenges 

Cetaceans are highly mobile mammals which can show various levels of genetic and 

ecological structures as well as morphological variations both at large and very fine scales 

(e.g. Sellas et al. 2005; Fontaine et al. 2007; Viaud-Martinez et al. 2008; Foote et al. 2009; 

Ansmann et al. 2012b; Wilson et al. 2012; de Bruyn et al. 2013). They can have complex 

social structures that vary from solitary individuals in mysticetes, where only mothers and 

calves form stable bonds (e.g. Valsecchi et al. 2002) to stable matriarchal societies for pilot 

whales and killer whales (Amos et al. 1993; Pilot et al. 2010). They are therefore particularly 

suitable models to study social, ecological and genetic structures and their interaction in 

shaping structuration patterns.  

Nevertheless, as they spend most of their time underwater, studying cetacean 

structuring patterns is particularly challenging. Individual monitoring using the marks on the 

fins through photo-identification that is described in more details in Chapter 2 enables the 

study of social structure and demography (Figure 1.1). However, field work is strongly 

constrained by sea conditions. In addition, while photo-identification monitoring is well suited 

for coastal areas and relatively small populations, its utility in offshore waters where small 

cetacean populations are generally large and highly mobile and their distribution largely 

unknown, is limited. 

 

 

 

 

 

Figure 1.1. Photo-identification 

work on bottlenose dolphins. 
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Therefore, indirect methods to study their ecology and population structure are 

necessary. Genetic, stable isotope, fatty acid, and pollutant studies can be carried out using 

samples from biopsied and stranded animals. Samples can be collected from free-ranging 

animals using a crossbow or a modified rifle that collect both skin and blubber samples 

(Figure 1.2a, Barrett-Lennard et al. 1996; Krützen et al. 2002). Several studies reported that 

the behavioral reactions of cetaceans were limited and only short-term, and no healing 

complications or infections were reported (e.g. Weller et al. 1997; Krützen et al. 2002; 

Tezanos-Pinto & Baker 2011). However, spending considerable time in the field may be 

needed to collect a suitable number of samples, and offshore sampling can be difficult and 

costly. Sampling stranded animals (Figure 1.2b), although having inherent bias such as the 

uncertainty of the origin of the individuals, can be a cost-effective and non-invasive method 

of getting samples. As detailed in Chapter 5, drift prediction models can be used to determine 

the most likely area of death of the individuals, which enhances the power and precision of 

working with tissue samples from stranded animals (Peltier et al. 2012). 

 

                      

Figure 1.2. a) Biopsy sampling of bottlenose dolphins using a crossbow. b) Stranded 

bottlenose dolphin. 

 

b) Why studying bottlenose dolphins? 

Common bottlenose dolphins, Tursiops truncatus, have a worldwide distribution in 

temperate and tropical waters, in inshore and coastal (including harbors, rivers, estuaries and 

fiords), deep pelagic and insular waters (Figure 1.3, Leatherwood & Reeves 1990; Wells & 

Scott 1999; Hammond et al. 2012). Their range does not extend to polar waters. The highest 

northern and southern latitudes where resident communities (i.e. groups of individuals of the 

same species that co-occur in space and time and have an opportunity to interact with each 

b) 

© Océanopolis 

a) 
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other) are found are respectively Scotland (Moray Firth, Wilson et al. 1999) and the South 

Island of New-Zealand (Fiordland, Currey et al. 2009a). As they occur across a wide range of 

habitats potentially facing distinct ecological pressures, they are an interesting study model to 

investigate the drivers of social and population structures. As detailed above, cetaceans are 

difficult to access which makes the study of their social and population structures challenging. 

However, bottlenose dolphins are extensively studied, making comparisons easier, which 

could help determine the underlying ecological and evolutionary processes driving social and 

population structures of the species. 

 

 

 

Figure 1.3. Bottlenose dolphin (Tursiops truncatus) range distribution, source: iucnredlist.org. 

 

 

c) Taxonomy and variations in ecology, morphology and genetic structure 

The taxonomic status of bottlenose dolphins (Tursiops sp.) remains unresolved and the 

genus is not monophyletic (the taxonomy of Delphininae was recently reviewed in Perrin et 

al. 2013). Two species are recognized: common bottlenose dolphins Tursiops truncatus 

(Montagu 1821) and Indo-Pacific bottlenose dolphins Tursiops aduncus (Ehrenberg 1832, 

LeDuc et al. 1999; Wang et al. 1999, 2000b, a). While common bottlenose dolphins have a 

worldwide distribution range (Figure 1.3), Indo-Pacific bottlenose dolphins are only found in 
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warm temperate to tropical Indo-Pacific areas. A third species has been described in South-

East Australia (the Burrunan dolphin, T. australis, Charlton-Robb et al. 2011) but its validity 

is debated. A subspecies of common bottlenose dolphin is recognized in the Black Sea, T. 

Truncatus ponticus (Viaud-Martinez et al. 2008). Here, we will focus on common bottlenose 

dolphins, although there are references to both common and Indo-Pacific bottlenose dolphins.   

 

Common bottlenose dolphin feeding ecology and morphology is variable across its 

distribution range. Two distinct ecotypes, i.e. “coastal” and “pelagic” have been described in 

the North-West Atlantic (NWA) and in the North-East Pacific (NEP, reviewed in Curry & 

Smith 1998). We define “pelagic” here as dolphins mainly occurring in deep waters (i.e. 

deeper than 200 m). The term “pelagic” is interchangeably used with “offshore” in the 

literature. We choose “pelagic” to refer to individuals occurring in deep-waters, even if they 

are close to shore (e.g. the Strait of Gibraltar, Spain). We acknowledge that pelagic can also 

mean “live in the water mass” in contrast to benthic. “Coastal” refers to individuals mainly 

sighted in shallow waters (less than 200 m, but in majority less than 40 m deep). 

In the NWA and the NEP, pelagic and coastal bottlenose dolphins are genetically, 

ecologically and morphologically distinct and show different parasite loads (Walker 1981; 

Duffield et al. 1983; Hersh & Duffield 1990; Mead & Potter 1995; Curry & Smith 1998; 

Hoelzel et al. 1998b; Walker et al. 1999; Segura et al. 2006; Kingston et al. 2009; Barros et 

al. 2010; Perrin et al. 2011).  While genetic differentiation is found in both areas, pelagic and 

coastal ecotypes are monophyletic for mitochondrial DNA only in the NWA (Curry & Smith 

1998; Hoelzel et al. 1998b; Segura et al. 2006; Kingston et al. 2009). In the North-East 

Atlantic (NEA), although ecotype differentiation has been suggested, it was not tested 

explicitly (e.g. Fernandez et al. 2011a; Mirimin et al. 2011).  

Fine-scale genetic structure is observed in coastal and inshore waters worldwide, 

presumably as a result of philopatry and habitat/resource specializations (e.g. Sellas et al. 

2005; Mirimin et al. 2011). Although often resident in inshore and coastal areas, large-scale 

movements have been reported, both in coastal and pelagic waters (Defran et al. 1999; Wells 

et al. 1999; Robinson et al. 2012).  
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d) Life-histories and social structure 

Bottlenose dolphins can live up to at least 57 years for females and 48 years for males. 

They reach sexual maturity between 5 to 13 years for females and between 8 and 14 years for 

males. Calves usually stay from 3 to 5 years with their mother, with separation often 

coinciding with the birth of the next calf. Gestation period lasts 12 months and inter-birth 

intervals usually range from 3 to 6 years (reviewed in Wells & Scott 1999; Connor et al. 

2000). Information on the life-history mainly originates from the well-studied population of 

Sarasota Bay (coastal ecotype of the NWA) but might vary slightly across the geographical 

range of the species. Nevertheless, bottlenose dolphins are long-lived animals with a low 

reproductive rate.  

Bottlenose dolphin (Tursiops sp.) social structure is defined as fission-fusion, where 

group composition changes on an hourly or a daily basis. Besides having a majority of short-

term associates, individuals can also share some strong and long-term relationships (Connor et 

al. 2000). Group sizes, patterns of relationships within and between sexes, relatedness, and 

temporal stability of associations can be variable across the wide geographical range of the 

species (e.g. Connor et al. 2000; Krützen et al. 2003; Lusseau 2003; Wiszniewski et al. 

2010b; Augusto et al. 2011; Connor et al. 2011; Wiszniewski et al. 2012a). The most detailed 

information came from the long-term studies of populations of Australia (Shark Bay, Connor 

et al. 2000) and Florida (Sarasota Bay, Wells et al. 1987). Social structure variations will be 

discussed in more details in Chapters 3 and 4.  

 

e) Bottlenose dolphins in the North-East Atlantic, distribution and 

conservation status 

In the North-East Atlantic, bottlenose dolphins are observed in both coastal and 

pelagic waters. They can form resident communities of tens to a few hundreds of individuals 

in bays, estuaries or coastal areas (Figure 1.4., e.g.  Liret 2001; López 2003; Pesante et al. 

2008; Augusto et al. 2011; Berrow et al. 2012; Cheney et al. 2012). Mobile coastal 

communities have been recorded around Ireland and in the Gulf of Cadiz (O’Brien et al. 

2009; Giménez et al. 2013). Resident individuals are observed in deep waters of the Strait of 
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Gibraltar and around the Azores, although the majority of individuals are transient around the 

Azores (>95%, Silva et al. 2008; Chico Portillo et al. 2011). 

 

 

Figure 1.4. Mobile and resident bottlenose dolphin communities inferred using photo-

identification data in the North-East Atlantic and the Mediterranean Sea. The list may not be 

exhaustive. The Normano-Breton gulf (English Channel) population is highlighted in red. 

 

Bottlenose dolphins also occur in pelagic waters in particular along the shelf edge 

where abundance estimations are tens of thousands of individuals (Figures 1.5a and 1.5b, 

Certain et al. 2008; Hammond et al. 2009; Hammond et al. 2013). 
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Figure 1.5. Sightings of bottlenose dolphins during a) SCANS-II (Small Cetacean Abundance 

in the North Sea and Adjacent waters surveys, Hammond et al. 2013) and b) CODA 

(Cetacean Offshore Distribution and Abundance, Hammond et al. 2009) surveys. 

 

In the Mediterranean Sea, resident communities are known around Corsica and North-

West Italy. A few mobile individuals were reported between Corsica and France and along the 

North-West coast of Italy (Gnone et al. 2011). Along the Mediterranean coast of France, 

individuals are relatively mobile (Labach et al. 2012). Overall, sightings were concentrated in 

deep-water (>200 m) areas during winter aerial surveys (SAMM, Suivi Aérien de la 

Mégafaune Marine, 2011/2012, E. Pettex, personal communication). Global abundance 

estimation is several thousands of individuals for the Mediterranean Sea (Forcada et al. 2004; 

Bearzi et al. 2008; Gnone et al. 2011). 

 

a

) 

b

) 
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Bottlenose dolphins (T. truncatus) are listed under Annex II of the CITES convention 

(Convention on International Trade in Endangered Species of Wild Fauna and Flora), which 

includes species that are not necessarily threatened with extinction but may become 

vulnerable if trade is not controlled. They are globally considered as “least concerned” by the 

IUCN (International Union for Conservation of Nature) Red List of Threatened Species 

(Hammond et al. 2012). Populations in the Mediterranean Sea and Black Sea (T. truncatus 

ponticus for the latter) are listed as respectively “vulnerable” and “endangered” (Bearzi et al. 

2012; Birkun 2012).  

Bottlenose dolphins are protected in European waters by the Habitats Directive 

(92/43/22C). They are listed in Annex II as a species whose conservation requires the creation 

of Special Areas of Conservation and in Annex IV as in need of strict protection. As human 

activities are increasing in both coastal and pelagic waters, potential threats include pollutants 

(the species show high levels of PCBs, e.g. Méndez-Fernandez et al. 2014), noise pollution in 

particular for constructions (e.g. Pirotta et al. 2013), disturbance by tourism activities (no 

studies have yet been conducted in Europe, but see Steckenreuter et al. 2012 for Australia) 

and bycatch (e.g. Morizur et al. 1999; López et al. 2003; Rogan & Mackey 2007). Studying 

population structure is therefore crucial for defining management plans and conservation 

units. 

 

f) Research questions 

An important community of bottlenose dolphins is present in the Normano-Breton gulf 

(English Channel, Figure 1.4), as suggested from opportunistic sightings and photo-

identification work. However, no dedicated study has yet been conducted on this community. 

It is important to gather knowledge on the abundance, and social and population structures of 

this bottlenose dolphin community, to ensure effective protection and management plans are 

in place. First, it is essential to set up a demographic monitoring plan for these dolphins, 

especially as human activities will increase in the upcoming years (e.g. there are projects of 

offshore water and wind turbines in the area). As detailed earlier, determining the structure of 

the community in terms of social, ecological and genetic structures is also important for 

management purposes. In addition, by using a combination of approaches, a better 

understanding of the factors driving sociality can be determined. Although being fission-
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fusion societies, bottlenose dolphins show variations in social structure characteristics (for 

example in stability and strength of associations, influence of relatedness or group sizes) 

across the large range of habitats where they occur. Thus, a comparison with other 

communities in the world will help to unravel the evolutionary and ecological processes that 

may shape the social organization of bottlenose dolphins and more broadly other social 

mammal species. 

 

To evaluate whether bottlenose dolphins of the Normano-Breton gulf were genetically 

isolated, it is important to place them on a wider context. Although bottlenose dolphin genetic 

structure has been studied locally in the North-East Atlantic (Quérouil et al. 2007; Fernandez 

et al. 2011b; Mirimin et al. 2011) as well as at a larger scale (but with relatively small sample 

sizes, Natoli et al. 2005), a global understanding of their genetic structure is lacking. In 

addition, we do not known if they form two ecotypes. Hence, another objective of this study is 

to evaluate the genetic structure of bottlenose dolphins in the North-East Atlantic using 

samples from both coastal and pelagic waters covering an unprecedented large area. Then, we 

aim to investigate how population structure and the formation of the coastal and pelagic 

ecotypes were triggered using past demographic history analyses. A comparison of the 

ecology and morphology of bottlenose dolphins of the two ecotypes was carried out to aid our 

understanding on how ecotype differentiation is maintained. More generally, this study is 

aimed at contributing to a better knowledge on the evolutionary and ecological processes that 

led to genetic and morphological divergences in highly mobile top predators. 

 

The general objective of my PhD work is therefore to describe and understand the 

fine-scale social and population (i.e. genetic and ecological) structures of bottlenose dolphins 

in the Normano-Breton gulf and their drivers, as well as the large-scale population structure of 

the species in the North-East Atlantic. 
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g) Manuscript organization  

I give a general background on the methods used in Chapter 2. 

Chapters 3 and 5 describe bottlenose dolphin social structure in the Normano-Breton 

gulf (English Channel) and the population structure in the North-East Atlantic respectively. In 

Chapters 4 and 6, I investigate the possible mechanisms creating and maintaining the 

described structures. 

More precisely, I first focus on bottlenose dolphins in the Normano-Breton gulf, 

English Channel, in Chapters 3 and 4 (see general location of the area in Figure 1.4, Figures 

1.6a and 1.6b). 

In Chapter 3, social structure is described and abundance is estimated.  

Then in Chapter 4, I test whether the social clusters identified in Chapter 3 correspond 

to genetic and ecological clusters. I also evaluate the relative influence of relatedness, gender 

and ecology on association patterns and discuss the possible drivers of sociality. 

 

 

Figure 1.6. a) juvenile and b) adult male coastal bottlenose dolphins in the English Channel. 

 

Chapter 5 presents results from the first study to evaluate the genetic structure of 

bottlenose dolphins in both coastal and pelagic waters in the whole North-East Atlantic. 
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Migration rates and effective population sizes* were also estimated. I discuss hypotheses that 

might explain this structure.  

Then in Chapter 6, the most likely population history of bottlenose dolphins in the 

North-East Atlantic is investigated to test if divergence between populations were triggered 

by past environmental changes. The ecology and morphology of bottlenose dolphins from the 

coastal and pelagic ecotypes, identified in Chapter 5, are characterized. I discuss how genetic 

and morphological divergences may be created and maintained in mobile social species. 

These chapters correspond to publications that are accepted, submitted or to be 

submitted. To avoid repetition, article material and methods have been slightly edited. As 

there are several co-authors, I used “we” in these chapters and I highlight below my personal 

contribution to each of the chapters. 

In Chapter 7, I synthetize the findings and discuss the results in a broader context, in 

particular the interaction between sociality, ecology and genetics, the interest of a multi-

disciplinary approach to define the structure of populations as well as management 

implications. I finish with proposing new perspectives of research.  

 

Publications included and personal contribution 

Chapter 3 

Louis M., Gally F., Barbraud C., Béesau J., Tixier P., Simon-Bouhet B., Le Rest K. 

and Guinet C. submitted. Social structure and abundance of coastal bottlenose dolphins, 

Tursiops truncatus, in the Normano-Breton gulf, English Channel. 

I took part in the field work during my PhD from April to October 2011 and before my 

PhD during July and August 2009 and from July to December 2010. I did the majority of the 

photo-identification work (75%), the remaining was done with the help of GECC (Groupe 

d’Etude des Cétacés du Cotentin lead by F. Gally) volunteers. I double-checked all the 

identifications. I performed all the statistical analyses with advice from some of my co-

authors. I wrote the paper and my co-authors commented on the manuscript. 
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Chapter 4  

Louis M., Simon-Bouhet B., Viricel A., Lucas T., Gally F., Cherel Y., Guinet C. to be 

submitted. Evaluating the influence of ecology, kinship and phylogeography on the social 

structure of resident coastal bottlenose dolphins. 

I organized the biopsy sampling field work. I took part in most of the biopsy sample 

collection (85%) where I did either the biopsy sampling, took the photos of the sampled 

individuals or drove the boat. The DNA extraction, optimization of the microsatellite markers, 

the molecular sexing, and the amplification of a portion of the mitochondrial DNA were 

carried out by a master student, Tamara Lucas, and by myself. I did the microsatellite 

genotyping for 20 microsatellites on a LICOR DNA analyzer while the individuals were 

amplified for 7 microsatellites by a private society, Genoscreen on an ABI DNA sequencer. I 

did all the scorings. I did the stable isotope lab work, the statistical analyses and I wrote the 

manuscript. Co-authors gave me advice on statistical analyses or on the manuscript and 

contributed to the design of the study. 

 

            Chapter 5 

Louis M., Viricel A., Lucas T., Peltier H., Alfonsi E., Berrow S., Brownlow A., 

Covelo P., Dabin W., Deaville R., de Stephanis R., Gally F., Gauffier P., Penrose R., Silva M. 

A., Guinet C. and Simon-Bouhet B. 2014. Habitat-driven population structure of bottlenose 

dolphins, Tursiops truncatus, in the North-East Atlantic. Molecular Ecology, 23: 857-874. 

I did not take part in the sample collection, apart from the ones from the Normano-

Breton gulf mentioned previously. They were collected by the organizations of each 

collaborator. I contacted them for collaboration at the beginning of the PhD and centralized 

the samples. As mentioned earlier, part of the DNA extraction, molecular sexing and 

amplification of the mitochondrial control region were done with the help of a master student. 

Microsatellite genotyping was performed as mentioned for the previous chapter. I did all the 

statistical analyses, apart from the drift modeling which was done by Hélène Peltier and I 

wrote the manuscript. Co-authors gave me advice on statistical analyses, commented on the 

manuscript or provided tissue samples. 
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Chapter 6 

Louis M., Fontaine M., Spitz J., Schlund E., Dabin W., Deaville R., Caurant F., Cherel 

Y., Guinet C. and Simon-Bouhet B. to be submitted. Ecological opportunities and 

specializations shaped genetic divergence in a highly mobile marine top predator. 

Genetic data from Chapter 5 were used. I did the stable isotopes lab work and 

statistical analyses. Morphometric measurements were recorded by the french Stranding 

Network. Part of the morphometric analyses were performed by a master student, Erika 

Schlund. Jérome Spitz did the stomach content lab work and analyses, and wrote the methods 

and results of this section. Population history analyses were done by Michael Fontaine, he 

wrote the methods and the results of these analyses. I learned how to carry out the population 

history analyses and wrote the rest of the manuscript. Co-authors provided samples or advices 

on statistical analyses or commented the manuscript.  
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This chapter aims at describing the general characteristics, principles or assumptions 

of the different methods used in this PhD that will not be detailed in the material and methods 

of each article chapter. This background is however important to understand the analyses that 

have been carried out. 

 

1) A combination of approaches: from recent to evolutionary time 

scales 

 

Different approaches were used to study bottlenose dolphin population and social 

structures. This chapter gives an overview of the methods used and some of their applications. 

The different approaches inform us on different time scales that are summarized in Figure 2.1. 

Figure 2.1. Time scales covered by the methods used in the PhD.  
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a) Photo-identification 

Individuals are identified thanks to natural distinctive physical features such as nicks, 

scars and coloration patterns. The method has been used to recognize individuals in a wide 

range of cetacean species and the part of the body used for identification can vary (Hammond 

et al. 1990; Würsig & Jefferson 1990).  For example, many dolphin species are identified 

using the marks and nicks on their dorsal fins (Figure 2.2). Sperm whales or humpback 

whales are mainly recognized by examining the characteristics of their flukes. Pigmentation 

comparisons allow to individually identified blue whales, bowhead whales or fin whales. 

Photo-identification is not limited to cetaceans. For instance, seals, giraffes, zebras, tigers 

among other species can be individually recognized thanks to their coloration patterns.  

 

Figure 2.2. Photo-identification matching of bottlenose dolphins using nicks and marks on the 

dorsal fin and the upper back. 

 

A catalogue is build and used to re-identify individuals on the photos taken during 

each field trip (Figure 2.2). When an animal is not recognized, he is added to the catalogue as 
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a new individual. It is important to grade the level of marking of each individual and the 

quality of the photos to avoid misidentifications. This point will be detailed in Chapter 3. 

Photo-identification can provide information on association patterns, demography, 

habitat use or behavior from very short-time scales (days) to the life-span of the individuals if 

the work is carried out on a long-term basis. 

A limitation of this method is that it is constrained by the spatio-temporal coverage of 

the field work. 

 

Photo-identification can be used for mark-recapture studies to estimate abundance and 

survival, similarly as artificial marking like bird ringing (Clobert et al. 1987; Wilson et al. 

1999; Currey et al. 2009b). The first capture (identification) is followed by several sampling 

occasions where the individual is recaptured (re-identified) or not. The succession of presence 

and absence in each sampling occasion represents the capture history of each individual. 

Mark-recapture models are applied on these capture histories. Using the number of marked 

individuals and their proportion in each sampling occasion, demographic parameters such as 

abundance, survival or growth rate can be estimated (Lebreton et al. 1992; Schwarz & Seber 

1999; Amstrup et al. 2005). Depending on the characteristic of the population (“closed” that 

is with no death, birth and migration or “open”) and the parameters to estimate, different 

models  are chosen (Amstrup et al. 2005). Abundance estimation for a “closed” population of 

bottlenose dolphins in the Normano-Breton gulf, English Channel, during summer is detailed 

in Chapter 3. 

Using photo-identification, it is also possible to work on movements patterns. For 

highly mobile animals, it often requires a collaborative framework and sharing of photo-

identification catalogues among organizations worldwide. In Europe, bottlenose dolphin 

movements have been reported between Scotland and Ireland thanks to photo-identification 

(Robinson et al. 2012). On a larger scale, humpback whales have been re-sighted between 

Australia and Antarctica or Cape Verde and Iceland (Jann et al. 2003; Rock et al. 2006). 

Social structure analyses have been applied on photo-identification data in a wide 

range of taxa, e.g. dolphins (Lusseau et al. 2003), giraffes (Carter et al. 2013), kangaroos 

(Best et al. 2013) or black-tip reef sharks (Mourier et al. 2012). The assumptions of these 
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analyses are that physical proximity, that is being member of the same group, indicates social 

affiliation and that the time spent together is correlated with the strength of social affiliation 

(Bejder et al. 1998). Individuals observed in the same social group are considered associated. 

The calculation of association indices between pairs of individuals is the basis of social 

structure analyses (see Whitehead 2008a for an exhaustive description of the methods). These 

analyses are detailed in Chapter 3 where bottlenose dolphin photo-identification data collected 

in the Normano-Breton gulf, English Channel, are used to describe social structure. 

 

 

b) Ecological and diet indicators 

Stomach contents 

Stomach content examination can inform on the diet of an individual at the species 

level as well as on the characteristics (length and mass) of individual prey using allometric 

relationships based on hard tissues like otoliths. Stomach contents indicate the diet of an 

animal over the last few days. One major limitation of this technique is the digestion rate that 

can vary for different prey species. In particular, some species can be overestimated because 

of the persistence of their hard pieces in the stomachs as they are difficult to digest (Santos et 

al. 2001a). In addition, analyses can only be performed on dead animals.  

The stomach contents of stranded animals have been used to study the diet of 

numerous cetacean species (e.g. Santos et al. 1999; Spitz et al. 2006). There is some 

uncertainty if stomach contents of stranded animals are representative of the diet of alive wild 

individuals. The physical condition of individuals may indeed affect their foraging capacities 

and some classes such as young or old individuals may eventually be over-represented in 

strandings. However, in Florida, results on prey species composition obtained using stomach 

content analyses on stranded animals and using molecular identification of prey in feces and 

gastric samples of free-ranging dolphins were highly consistent (Dunshea et al. 2013). In this 

dissertation, stomach contents are used, in complement with stable isotope analyses, to 

understand the foraging ecology of bottlenose dolphins in Chapter 6.  
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Stable isotopes 

In the environment, natural elements can be found in different isotopic forms. Isotopes 

of any given chemical element have different number of neutrons, thus their atomic mass is 

different. Therefore, in biogeochemical reactions, the heavy isotopes accumulate in substrates 

as they react slower than light isotopes while products are depleted in heavy isotopes (Figure 

2.3). This process, called the isotopic fractionation, controls isotope distribution (ratio of 

heavy to light isotopes) in the environment (Fry 2006).  

 

 

 

 

 

Figure 2.3. Illustration of the isotopic fractionation process (source: Fry 2006). 

 

In ecology, stable isotope analyses are indirect tools to study foraging ecology. There 

are based on the principle “you are what you eat”, that is the biochemical composition of the 

tissue of a consumer is linked to the one of its prey (Kelly 2000).  δ
13

C (
13

C/
12

C) and δ
34

S 

(
34

S/
32

S) vary according to primary producers. In the marine environment, δ
13

C and δ
34

S 

indicate consumer foraging habitats such as pelagic vs benthic or inshore vs offshore habitats. 

δ
13

C also vary along latitudinal gradients (Peterson & Fry 1987; Kelly 2000; Connolly et al. 

2004). δ
34

S do not vary between consumers and prey and δ
13

C vary little with increasing 

trophic level (generally less than 1 ‰, see review in Peterson & Fry 1987). In contrast, 
15

N is 

preferentially accumulated in the tissues of the consumers relative to their diet, therefore an 

average enrichment of 3 to 4 ‰ in δ
15

N (
15

N/
14

N) is generally observed with each increasing 

trophic level (see review in Kelly 2000). δ
15

N is therefore used as an indicator of trophic 
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position. It can also reflect feeding areas in some ecosystems (e.g. inshore vs offshore in the 

Bay of Biscay, Chouvelon et al. 2012). 

The turn-over rate of stable isotopes in a given tissue depends on the tissue metabolic 

rate. Therefore, stable isotopes are integrated over different time scales in different tissues 

(Tieszen et al. 1983; Hobson & Clark 1992). For example, in plasma, stable isotopes will 

inform on the diet and habitat use during the last few days preceding the tissue sampling (e.g. 

Podlesak et al. 2005) and in skin or muscle during several weeks to months (e.g. Tieszen et al. 

1983; Browning et al. 2014). In hard tissues, like teeth, bones, whiskers or baleen plates, 

stable isotopes are integrated over the entire life of the individuals (e.g. Best & Schell 1996; 

Estrada et al. 2006; Mendes et al. 2007; Kernaleguen et al. 2012). The integration time of a 

specific soft tissue can also vary according to the species considered as metabolic rates are 

also species-specific (MacAvoy et al. 2006). One drawback of this method is that 

interpretation might be difficult especially if the baseline values of the ecosystems are not 

known (reviewed in Ramos & Gonzalez-Solis 2012). For instance, similar stable isotope 

signatures could be the result of a similar diet in the same habitat or a dissimilar diet in 

distinct habitats that have the same baseline values.  

Stable isotopes have numerous applications in ecology and environment studies. To 

cite only a few examples, stable isotopes have been used to identify foraging habitats and 

migration patterns in a wide range of taxa (i.e. insects, fish, birds or mammals, see review in 

Rubenstein & Hobson 2004). By comparing stable isotopes in consumers and potential prey, 

or applying stable isotope mixing models on predator and prey data, it is possible to estimate 

the diet of a predator (e.g. Cherel et al. 2008; Huckstadt et al. 2012; Watt et al. 2013). As 

stable isotopes reflect habitat use and diet composition, stable isotope analyses can also help 

to determine population structure (e.g. Rooker et al. 2008a; Olin et al. 2012; Rioux et al. 

2012; Wilson et al. 2012). Stable isotope signatures could be used as proxies of ecological 

niches (Newsome et al. 2007; Jackson et al. 2011). The ecological niche has been defined by 

Hutchinson (1957, 1978) as an n-dimensional hyper-volume with biotic and abiotic 

environment and resource variables as axes. These axes may be quantified by stable isotope 

signatures of δ
15

N and δ
13

C (or others such as δ
34

S) as they inform on either or both trophic 

level and environment and resource uses (Bearhop et al. 2004; Newsome et al. 2007; Jackson 

et al. 2011). Although the limits of stable isotope analyses should be recognized (i.e. see 
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above and complex physiological processes may influence stable isotope tissue composition), 

isotopic niches can therefore be used to investigate ecological niches (Newsome et al. 2007). 

In Chapters 4 and 6 stable isotopes are used as indicators of foraging ecology and 

habitat use (i.e. ecological niches) as well as tools to investigate population structure.  

 

 

c) Morphometrics 

 

Morphometrics is the quantitative analysis of the size and/or the shape of an organism. 

They can be used, together with other morphological characters (e.g. coloration patterns) and 

genetic analyses, to separate species (e.g. short-finned and long-finned pilot whales are 

distinguished with the ratio of the length of the pectoral fin to the total length of the body 

along with the number of teeth per half jaw, Van Bree 1971; Robineau 2005). They can also 

be used in evolutionary ecology studies to understand how environmental conditions might 

influence morphological traits such as body size, size of appendices or cranial traits on short 

to evolutionary time scales (e.g. Grant & Grant 2002; Viaud-Martinez et al. 2007; Berner et 

al. 2010; Rode et al. 2010). For instance, body length can strongly be constrained by 

environmental conditions. Decreased body length in a polar bear population over two decades 

was correlated with a decline in sea-ice habitat availability (Rode et al. 2010). A rapid 

increase in body length in a population of fur seals may be the result of selective processes, in 

particular as bigger individuals have higher reproductive success (Authier et al. 2011). 

Resource polymorphism may also shape morphological traits (Smith & Skúlason 1996). The 

shape and size of beaks of darwin’s finshes varied across years probably because of variations 

in the availability of their food, i.e. seeds of different sizes, and the presence of competitors 

(e.g. Grant & Grant 2002, 2006). Although morphological trait evolutions for the latter 

examples were rapid, morphological divergence may be constrained by time. For example, 

Canada lake and stream threespine sticklebacks, that originated thousands years ago, are 

highly morphologically differentiated. In contrast, European lake and stream individuals were 

weakly morphologically distinct, possibly as a result of time constraints on divergence, as 

they originated less than 150 years ago. Nevertheless, at least some traits have evolved on a 
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contemporary basis (Berner et al. 2010). In cetaceans, morphological variations are observed 

for example between open oceans and enclosed seas such as “dwarfism” for bottlenose 

dolphins and harbor porpoises in the Black Sea (Perrin 1984; Viaud-Martinez et al. 2007; 

Viaud-Martinez et al. 2008), which may have evolved on an evolutionary time scale. Thus, 

variations in morphological characters may reveal adaptations to different resource use both 

in terms of habitats and diets, and can therefore be an indicator of population structure (Perrin 

1984). For instance, offshore and coastal bottlenose dolphin ecotypes in the North-East 

Pacific and in the North-West Atlantic differ in skull features (Hoelzel et al. 1998b; Perrin et 

al. 2011). In addition, apical tooth wear differ between weakly genetically differentiated killer 

whale specialists and generalists in the North-East Atlantic (Foote et al. 2009). 

In Chapter 6, morphometric analyses are carried out to characterize bottlenose dolphin 

ecotypes in the North-East Atlantic. 

 

d) Molecular markers: mitochondrial DNA and microsatellites 

Mitochondrial DNA 

Mitochondrial DNA is a small circular molecule which is present in numerous copies 

in animal cells. It is haploid and mostly maternally inherited although heteroplasmic 

individuals (i.e. for which mitochondrial DNA was biparentally inherited) can be observed in 

different proportions in some taxa (e.g. Zouros et al. 1994; Vollmer et al. 2011). As it is 

haploid, there is generally no recombination (but see Eyre-Walker 2000; Ujvari et al. 2007). 

Evolution rate is five to ten times faster than nuclear DNA in mammals (Moritz et al. 1987), 

with an average mutation rate of 1 x 10
-8

 per site per year, making it useful in population 

genetics and phylogenetic studies. Mitochondrial DNA is composed by different regions 

which have different evolution rates including the control region which is the most variable 

and rapidly evolving part and thus of interest for population genetic studies. Estimates of 

mutation rates for the control region of cetaceans vary from 0.5 x 10
-8 

to 1.3 x 10
-6

 per site per 

year (Hoelzel et al. 1991; Harlin et al. 2003; Alter & Palumbi 2009; Fontaine et al. 2010). 

As it is haploid and maternally inherited, effective population size at mitochondrial 

loci is four times lower than at nuclear loci. Mitochondrial genome is therefore more sensitive 
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to genetic drift and integrates demographic events like population expansions or bottlenecks* 

since a longer time than nuclear markers. 

Polymorphism in the sequence is detected through sequencing. Each haplotype is a 

unique sequence. Different haplotypes differ by one or more nucleotides because of 

substitutions, deletions or insertions.  

 

Microsatellites 

Microsatellites are nuclear non-coding markers that are bi-parentally inherited and 

supposedly neutral (i.e. not affected by selection). Also known as “Short Tandem Repeat”, 

they are tandemly repeated sequences where the repeated unit contains typically two to four 

nucleotides. The number of repeated units at a given locus can differ, resulting in alleles of 

different sizes. These alleles of different sizes can be separated using electrophoresis.   

Microsatellites are highly variable and polymorphic. Mutation rates are higher than in 

the rest of the nuclear genome, they range from 10
-5 

to
 
10

-3
 per locus per generation (Crawford 

& Cuthbertson 1996; Brinkmann et al. 1998; Estoup & Angers 1998). They are therefore 

well-suited for fine-scale genetic structure studies and for investigating recent gene flow. 

  

 

Combination of the two markers 

The different rates of evolution of mitochondrial DNA and microsatellites provide 

information on processes occurring at different time scales (i.e. on recent processes for 

microsatellites and on more historical processes for mitochondrial DNA). In addition, the 

different modes of inheritance can reveal distinct dispersal patterns between males and 

females (Pardini et al. 2001; Bowen et al. 2005). Comparisons of the results obtained using 

the two types of markers can also help to avoid misinterpretations. For instance, as there is 

generally no recombination for mitochondrial DNA genome, if a mutation is selected, it will 

impact the whole mitochondrial genome. This phenomenon called selective sweeps can lead 

to a loss of diversity (Bazin et al. 2006) similar to what can be observed for a bottleneck or a 
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founder event*. If microsatellites also indicate a low level of diversity, the selective sweeps 

hypothesis would be less supported than the bottleneck or the founder event. 

The combination of markers is therefore essential to understand population structure. 

 

Both markers have been extensively used in population genetic studies. Mitochondrial 

DNA is also largely employed to investigate phylogeny and microsatellites are used to 

estimate relatedness between individuals and to carry out parentage analyses. In this 

dissertation, both mitochondrial DNA and microsatellites are used to infer population 

structure and evolutionary history of bottlenose dolphins in the North-East Atlantic (Chapters 

5 and 6) and in the English Channel (Chapter 4). Microsatellites are also used to estimate 

relatedness between bottlenose dolphins in Chapter 4. 

 

 

2) Statistical analyses of molecular markers 

 

As my dissertation contains a large part of genetic analyses, I give here a general 

description of the key statistical methods used and their assumptions to make the reading of 

the following chapters easier. I do not aim to provide an exhaustive review of all available 

methods, but the basic principles of the two main analyses used in the following chapters are 

explained. I first describe the general principle of Bayesian statistics, which were later used 

both to infer population structure and demographic history. Then, I focus on the detection of 

genetic structure methods which were employed to infer bottlenose dolphin genetic structure 

in Chapters 4 and 5. Lastly, I introduce coalescent theory on which demographic history 

reconstructions are based and the method used in Chapter 6 to infer population history of 

bottlenose dolphins in the North-East Atlantic: Approximate Bayesian Computation. The 

details of the methods (such as parameter values) will be given in the material and methods of 

each chapter.  
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a) Bayesian statistics 

In Bayesian statistics, prior knowledge on the parameters of the model of interest (i.e. 

the hypothesis to test) is summarized in the prior probability distribution (or prior). Bayes’ 

Theorem produces a posterior probability distribution using the prior and the likelihood of the 

data given the model. Like P-values, posterior probability distributions are a measure of the 

confidence of a model or of parameter estimates. 

The posterior probability distribution P(θ|Y), that is the probability of the parameters 

of the model (θ) given the data (Y) is estimated using the Bayes Theorem following the 

formulation:  

𝑃(θ|𝑌) =
𝑃(𝑌|θ)𝑃(θ)

𝑃(𝑌)
  

where P(Y |θ) is the likelihood of the data given the parameters of the model, P(θ) is 

the prior probability distribution and P(Y) a normalizing constant. 

Priors can either be informative or uninformative. The computation of the posterior 

probability distribution is often performed using Markov Chain Monte Carlo (MCMC). 

Similarly to Akaike Information Criterion (AIC), the Deviance Information Criterion (DIC) 

can be used for model comparisons. 

 

b) Genetic structure 

Until the end of the 20
th

 century, genetic structure was inferred by defining a priori 

groups of individuals based on geographical, ecological or other characters and by estimating 

F-statistics or conducting analysis of molecular variance to measure the divergence among 

these predefined groups (Wright 1951; Excoffier et al. 1992). This method had several 

drawbacks. First, groups created a priori can be biologically irrelevant, subjective and 

spurious. In addition, cryptic patterns of genetic structure such as genetic structure with no 

obvious barrier to gene flow or secondary contact among previously isolated populations 

cannot be detected. Therefore, Bayesian clustering methods that are based solely on the 

multilocus genotypes of the individuals have been developed (Pritchard et al. 2000). They are 
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thus objective methods. In addition, the Bayesian framework enables to include spatial 

information as a priori (Guillot et al. 2005; Chen et al. 2007; Durand et al. 2009b).   

We used Bayesian clustering methods based on multilocus genotypes to infer the most 

likely number of populations and assign individuals probabilistically to each population. We 

used a non-spatial method implemented in STRUCTURE (Pritchard et al. 2000; Falush et al. 

2003) and a method that uses the geographical coordinates of individuals as a priori 

information (software TESS, Chen et al. 2007; Durand et al. 2009b).  

The general principle is (i) to estimate the most likely number of populations and (ii) 

assign individuals probabilistically to each population. 

 

Bayesian clustering methods 

STRUCTURE 

In the STRUCTURE model, there are K populations (where K can be unknown) which 

are characterized by a set of allele frequencies at each locus. The model considers that the 

populations are in Hardy-Weinberg Equilibrium* (HWE) and that there is complete linkage 

equilibrium* between loci within each population. The population structure is defined by 

minimizing Hardy-Weinberg and linkage disequilibria. The model aims at simultaneously 

assigning individuals to populations and estimating allele frequencies. A Bayesian approach is 

used to estimate the parameters of interest that are the number of populations, the populations 

of origin of each individual and allele frequencies. The Bayesian framework enables to 

consider the inherent uncertainty of the parameters and to include a priori information. In 

STRUCTURE, the null distribution corresponds to an equal probability for the individuals to 

be part of each population. Posterior estimates of the parameters are inferred using a MCMC 

method.  

In STRUCTURE, the most likely number of populations (K) is ad hoc estimated. It is 

a fixed parameter of the model and several simulations of each K values to test should be 

performed (e.g. 10 simulations for each K values from 1 to 10). The number of K to test is 

chosen according to sampling characteristics and the biology of the species. The model choice 

criterion to estimate the most likely number of populations is the posterior probability of the 
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data for a given K, Pr(X|K) that is noted Ln P(D). This criterion is obtained by first calculating 

at each step of the MCMC the log likelihood of the data. Then, the mean of the latter values is 

calculated and half of their variance is subtracted to obtain Ln P(D). The value of K for which 

the maximum Ln P(D) is obtained is considered as an indication of the most likely number of 

populations. 

However, using simulations, Evanno (2005) showed that even when the true K value 

was reached, Ln P(D) could form a plateau or could still increase slightly. They proposed 

another criterion to choose the most likely number of clusters, ΔK. It is an ad hoc quantity 

based on the second order of change of the log probability of the data according to the number 

of K. They showed, using simulations that it was a good predictor of the “true” number of 

populations even for complex patterns of population structure. In particular, the method is 

efficient at detecting hierarchical structure. Both of the described criterion as well as the plots 

of the individual assignments to each population should be examined in practice (Evanno et 

al. 2005). 

 

Different models have been implemented: without and with admixture and with 

correlated and uncorrelated allele frequencies. In the model with no admixture, each 

individual is assigned to one population. The probability that an individual is part of each 

population can be called “assignment probability” and reveal the uncertainty of the 

classification. In the model with admixture, it is not the individual itself but fractions of its 

genome (i.e. allele copy that is “an allele carried at a particular locus by a particular 

individual”) that are assigned to a population. The percentages of the genome of an individual 

that came from each population are called “admixture proportions” (Figure 2.4.). 
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Figure 2.4. How to read a STRUCTURE barplot for the model without admixture and with 

admixture? Each vertical line on the x axis represents an individual, the y axis represents the 

assignment probabilities or admixture proportions. 

 

In practice, if each population is thought to be completely discrete, the model without 

admixture is suitable. However, admixture between populations is relatively common in the 

field, and sampled individuals could have recent ancestors from several populations. The 

admixture model is thus often more appropriate.  

 

The model of uncorrelated allele frequencies can be used for populations that are not 

closely related. In this model, different populations are not expected to have similar allele 

frequencies, thus subpopulations that share similar frequencies might be merged. The 

alternative model allows allele frequencies to be correlated when populations are supposed to 

be closely related due to shared ancestry. It has greater power to detect distinct populations 

when they are closely related and in the opposite situation (absence or low level or 

correlations), it will led to similar results than the uncorrelated allele frequency model. It is 

therefore recommended to use this conservative approach. 
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For cetaceans which are highly mobile, when individuals are continuously distributed 

or when discrete groups of individuals are still geographically close to another, the admixture 

models with correlated allele frequencies seem to be an appropriate model. 

Although not detailed here, latter developments included methods that allow for a 

certain degree of linkage between loci (Falush et al. 2003) as well as other modifications. 

  

TESS 

Spatially explicit Bayesian clustering methods such as TESS (Chen et al. 2007; 

Durand et al. 2009b), BAPS5 (Corander et al. 2008) and GENELAND (Guillot et al. 2005) 

aim at identifying spatial population structure and spatially locating discontinuities in allele 

frequencies (e.g. Coulon et al. 2006). These methods can be used to detect the spatial 

population structure but also clines that are spatial trends in allele frequencies or genetic 

diversity resulting from either an adaptation across an environmental gradient or a secondary 

contact area between two previously isolated populations (Francois & Durand 2010). 

In this dissertation, we have used TESS. It is a spatially explicit Bayesian algorithm 

which assumes that there are Kmax populations that are at HWE. Geographical coordinates of 

the individuals are included in the prior distributions of the individual population assignment 

probabilities or admixture proportions. An individual spatial network is created based on 

sampling locations using statistical computations that are not described here (see Chen et al. 

2007; Durand et al. 2009a; Durand et al. 2009b for further details). In the model without 

admixture, individuals that are spatially close in the network are given a higher probability to 

belong to the same population than more distant individuals. An interaction parameter 

controls the weight given to the spatial information, if it is null the model is similar to the 

model without admixture with uncorrelated allele frequencies of STRUCTURE. It should be 

noted that TESS does not allow modeling correlated allele frequencies. In the model with 

admixture, the fraction of an individual’s genome that originated from each K is estimated. By 

incorporating spatial information, closer individuals should be more similar than distant ones. 

The interaction parameter controls the intensity of the spatial effect. 

The most likely number of populations (Kmax) is chosen using Deviance Information 

Criterion (DIC) which is similar to the ΔK method introduced earlier for STRUCTURE. 
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However, sometimes the effective number of populations (K) might be smaller than Kmax. 

Thus, it is suggested to choose the value of Kmax when it reaches a plateau (Durand et al. 

2009a).  

The parameters of interest are inferred in a Bayesian framework. Similarly to what I 

have described for STRUCTURE, TESS produces barplots of assignment probabilities or 

admixture proportions. In addition, the main feature is the possibility to map the results (see 

Figure 2.5). 

 

 

 

 

 

Figure 2.5. How to read TESS results? Each map produced by TESS is a map of the 

assignment probabilities (or admixture proportions) to one of the population (i.e. if the most 

likely number of population is four, four maps will be produced). Each individual is 

represented by a white point. The color scale represents the probability of each individual (or 

its genome) to be part of the population. The warmer the color, the higher the probability to 

belong to the population. Here, individuals sampled in Wales, Scotland and North-West 

Ireland have a high probability to belong to the same population. 

 

Non-bayesian clustering methods 

Both TESS and STRUCTURE rely on genetic model assumptions (e.g. Hardy-

Weinberg and Linkage Equilibria) and are therefore based on an “idealized” population 

model. With large datasets, they may require long computational times, due to the nature of 

MCMC simulations, in particular for STRUCTURE. For example, the MCMC may need tens 

of thousands of steps to reach convergence. In addition, an initial portion of the MCMC 

should be discarded to avoid the influence of initial values on the posterior distributions. The 

DAPC (Discriminant Analysis of Principal Components) is an alternative method that does 
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not rely on any genetic model assumptions (Jombart et al. 2010). It tries to cluster individuals 

based on genetic similarity, with genotypes being treated like a classical multivariate dataset. 

In DAPC, the number of clusters is first determined using a K-means method that aims at 

determining populations of individuals by minimizing within-population genetic variation. As 

in the Bayesian clustering methods, the K-means algorithm is ran with different numbers of 

putative populations. BIC (Bayesian Information Criterion) is used to determine the most 

likely number of populations. Then, the data are transformed using a Principal Component 

Analysis which summarizes the overall variability among individuals both among and within 

populations. This step ensures that the numbers of variables (i.e. alleles) are lower than the 

number of individuals and that the variables are not correlated. The Discriminant Analysis is 

applied on the Principal Components; it aims at partitioning genetic variation so that among-

population variation is maximized while within-population variation is minimized. 

Individuals are assigned probabilistically to each population. DAPC has the advantage to have 

a fast computational time, even for large datasets. In addition, it has been shown to be as 

efficient as STRUCTURE (Jombart et al. 2010). DAPC also provides a visual representation 

of the structure between the populations, i.e. the scatterplots, which helps to understand the 

patterns of genetic structure (see Figure 2.6, Jombart et al. 2010). 
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Figures 2.6. Different migration models used to simulate data for DAPC analyses in Jombart 

(2010) for A)a) an island model, b) a hierarchical island model with the dotted lines indicating 

the archipelagos, c) a hierarchical stepping stone with the contact zone indicated by the dotted 

lines and d) a stepping stone. Red circles correspond to random mating populations and the 

arrows to gene flow with black arrows corresponding to a higher migration rate than grey 

ones. B) DAPC scatterplots of the simulated data for the four migration models (in the same 

order as in A, source: Jombart et al. 2010). 

 

 

c) Coalescent theory and population demographic history analyses 

 

Coalescent theory is the base of numerous methods or models that aim at 

reconstructing the past history of populations such as their size, growth rate, gene flow or 

their patterns and times of divergence using molecular markers. Here, I will explain the 

general theory and the specific method that was used in this dissertation to reconstruct the 

demographic history of bottlenose dolphins in the North-East Atlantic in Chapter 6.  

Classical population genetics is a prospective approach which aims at predicting the 

future of allele frequencies in populations. In contrast, coalescent theory is a retrospective 

approach which aims at reconstructing the genealogy of a sample of genes going backwards 

in time to the Most Recent Common Ancestor (MRCA, Figures 2.7a to 2.7c, reviewed in 

A) 

B) 
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Nordborg 2001). It should be noted that in a coalescent framework, we work with genes, not 

individuals. In any population, the probability for two genes to coalesce follows an 

exponential probability distribution. As we get backwards in time, the number of genes will 

decrease and the time to the next coalescent event (represented by the branch length) will 

increase. As most mutations can be considered neutral, they can be added afterwards 

following a Poisson distribution with parameter the length of branches. 

 

 

Figure 2.7. Principle of the coalescent theory. a) The complete genealogy of a population of 

10 genes. b) Genealogy of a sample of genes (n=3), here highlighted in black, back to a single 

common ancestor. c) The genealogy of the sampled genes. It starts form n genes at present 

back to a single gene in the past, the Most Recent Common Ancestor (MRCA), through 

coalescent events at different times in the past (source: Leblois, 2010, “La théorie de la 

coalescence et ses applications”, diapositives de cours, ENS Lyon). 

 

For neutral markers, the gene genealogy is only based on the demography of the 

population. The topology of the coalescent tree (i.e. the branch lengths and times of 

coalescent events) can thus inform us about the demography of the population (Figure 2.8). 
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Figure 2.8. Genealogies sampled respectively from a) constant-size, b) shrinking and c) 

growing populations (source: Kuhner 2009). 

 

The coalescent theory allows the probabilistic simulation of genetic variability 

expected under different demographic scenarios. Simulation is made easier as it is based on 

samples of genes instead of the whole population. However, the number of possible gene 

genealogies is infinite. Therefore, numerical approaches (that will not be detailed here) have 

been developed to explore the relatively more probable genealogies. These methods can be 

named “coalescent samplers” (reviewed in Kuhner 2009). To find the most likely genealogy 

(i.e. the probability that the data have evolved under this genealogy and mutation model), the 

sampler can implement either or both likelihood-based or Bayesian approaches using Markov 

Chain Monte Carlo (MCMC). However, the computation of the likelihood function is 

notoriously difficult, as the search space for parameters is infinite, which limits the 

possibilities of scenarios to test. Hence, mostly simple scenarios, which generally involve a 

low number of populations, can be tested. Although recent developments allow to include 

more populations (e.g. IMa2, Hey 2010), computation times are long (several months) and 

MCMC might never reach convergence as the parameter space is very large. 

Another approach was also developed: “Approximate Bayesian Computation” (ABC) 

where the likelihood function calculation is replaced by simulations and summary statistics 
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which are used to measure the similarity of the observed and simulated datasets (reviewed in 

Bertorelle et al. 2010; Csilléry et al. 2010). In this dissertation, we have used the 

computations implemented in the software package DIYABC (Cornuet et al. 2008; Cornuet et 

al. 2010; Cornuet et al. 2014). A large number of demographic scenarios can be tested, which 

can combine admixture and divergence between populations and changes in effective 

population sizes and can include a large number of populations. For instance, patterns and 

times of divergence among populations, colonization events, or changes in effective 

population sizes can be investigated (e.g. Verdu et al. 2009; Estoup & Guillemaud 2010; 

Fontaine et al. 2012). One drawback of the DIYABC program is that it cannot explicitly 

include migration. In DIYABC, similarly as in other ABC approaches, the different steps are 

as follow (and are summarized in Figure 2.9 adapted from Excoffier et al. 2005; Cornuet et al. 

2008): 

 

1) Simulation step:  

Simulated datasets are generated under demographic scenarios and mutation models 

with parameter values drawn from prior distributions. Prior distributions include a priori 

knowledge on the population of interest (e.g. effective population sizes) and the markers (e.g. 

microsatellites and mitochondrial DNA mutation rates for mammals). Simulations are based 

on coalescent theory. Summary statistics are selected and computed on the observed and 

simulated datasets. The summary statistics correspond to quantities used to characterize 

genetic diversity within and among populations (e.g. the number of alleles or FST). The choice 

of the statistics depends on the demographic history questions to investigate. 

In DIYABC, the ability of the combinations of scenarios and priors to produce 

simulated summary statistics that are close to the observed summary statistics can be checked 

using a Principal Component Analysis or by statistically comparing each summary statistic of 

the observed data to the distribution of the simulated summary statistics. This step can help to 

determine if some parameters of the model or the priors have not been well defined.  

 

 



Chapter 2 – Methodological background 

 

 

48 

 

2) Selection step:  

Euclidian distances between simulated and observed summary statistics are computed 

and the simulated datasets which are the closest to the observed dataset are selected (e.g. 1%) 

while the others are rejected. 

 

3) Estimation step and scenarios comparison: 

The posterior probabilities of each scenario can be estimated and compared between 

scenarios, using the simulated datasets which are the closest to the observed dataset, by two 

different methods: by calculating how much time each scenario is found (the direct approach) 

or by applying a logistic regression (which should be preferred, Beaumont et al. 2002). In the 

regression, the posterior probability of scenarios is the dependent variable and the predictors 

are the distances between observed and simulated summary statistics. 

The posterior distributions of the parameters for each scenario are estimated by 

applying a local linear regression to the simulated datasets which are the closest to the 

observed one. In the regression, the parameter is the dependent variable and the predictors are 

the distances between observed and simulated summary statistics. 

 

4) Confidence in the scenario choice and in the parameter estimates 

For each scenario, a few hundred datasets are simulated using parameters values 

drawn from the prior distribution specified in the first step. Posterior probabilities are 

computed and used to estimate the Type-I and Type-II error rates in choosing each scenario. 

For instance, Type-I error rate for scenario A is estimated as the proportion of simulated 

datasets generated under scenario A that supports other scenarios. Type-II error rate for 

scenario A is estimated as the proportion of datasets simulated under all the other scenarios 

that supports scenario A. 
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5) Model-checking 

The “goodness-of-fit” of a scenario according to the observed dataset, that is how well 

a scenario can reproduce the observed dataset, can be computed. It measures the consistency 

between a scenario and its parameter posterior distributions (i.e. “the posterior predictive 

distributions”) and the observed dataset using summary statistics. Summary statistics should 

also include statistics that have not been included previously in the inference step; otherwise 

the quality of the fit may be overestimated. In practice, data are simulated under each scenario 

using parameter values drawn from parameter posterior distributions. DIYABC allow testing 

visually, through a Principal Component Analysis, if the observed data are in the range of the 

values generated using the posterior predictive distributions. The probability that the 

simulated data do not encompass the observed data could be estimated for each summary 

statistics. 
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Figure 2.9. The different steps of an Approximate Bayesian Computation Analysis in 

DIYABC (source: adapted from Excoffier et al. 2005; Cornuet et al. 2008; Cornuet et al. 

2010).
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1) Introduction 

The estimation of spatio-temporal variations of demographic parameters in top 

predator populations is critical to assess their health, the potential impact of anthropogenic 

activities and to take appropriate management measures (Frederiksen et al. 2004; Votier et al. 

2005; Bejder et al. 2006). In addition, for social species, studying the social structure and 

differences in habitat use between social clusters, i.e. sets of individuals so that the majority 

of social associations occurs within rather than between social clusters, is also important to 

ensure their conservation (Sutherland 1998; Whitehead et al. 2004). For example, according 

to their spatial distribution or diet specializations, distinct social clusters may respond 

differently to human activities or environmental changes (Chilvers & Corkeron 2001; 

McComb et al. 2001; Whitehead & Rendell 2004; Whitehead et al. 2004; Ansmann et al. 

2012a). Studying social structure can also shed light on the forces that are driving population 

processes. Sociality develops as a trade-off between the selective forces conferring benefits to 

group living (such as cooperation, protection from predators, transfer of information) and the 

costs incurred (e.g. increased competition, parasite load, see review in Krause & Ruxton 

2002). Social groups are likely to be maintained when the fitness gains of sociality outweigh 

the costs (Alexander 1974). Ecological factors, in particular variations in local resources, can 

affect the size and persistence of social groups (Wrangham 1980; Rubenstein & Wrangham 

1986; Lusseau et al. 2004; Ramos-Fernandez et al. 2006). For instance, in fission-fission 

societies, associations between individuals are highly dynamic and temporary, lasting from 

several hours to a few days, and may be adjusted in response to fluctuations in resource 

availability. Individuals tend therefore to associate when fitness benefits of social grouping 

are high (Connor et al. 2000; Wittemyer et al. 2005; Smith et al. 2008). Individuals can also 

share long-lasting and stable relationships and the proportion of long-term associations might 

be constrained by ecological conditions (as suggested in Lusseau et al. 2003; Augusto et al. 

2011).  

 

Bottlenose dolphins (Tursiops sp.), which are found from temperate to tropical waters, 

live in fission-fusion societies (Connor et al. 2000). They associate in small groups whose 

composition quickly changes (several times per day). Associations tend to be determined by 

gender and age (Connor et al. 2000). However, in these dynamic societies, besides mother 
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and calf associations that typically last for at least 3 years (Wells et al. 1987), individuals can 

also share strong relationships such as those among adult males (Connor et al. 1992). Social 

structure varies across communities (i.e. groups of individuals of the same species that co-

occur in space and time and have an opportunity to interact with each other) and seems to be 

shaped by ecological factors such as prey resources or oceanographic conditions and intrinsic 

factors, in particular, shared knowledge and behavioral strategies (Lusseau et al. 2003; Daura-

Jorge et al. 2012; Mann et al. 2012). Great variations in distribution and size of communities 

have also been reported worldwide, with communities exhibiting patterns of residency 

ranging from highly resident (Wilson et al. 1999) to migratory (i.e. showing seasonal site 

fidelity, Barco et al. 1999) or transient (i.e. showing no site fidelity, Defran & Weller 1999). 

Abundance vary also from very small communities of tens (Liret 2001) to very large 

communities of thousands of individuals (Read et al. 2003). 

 

Tursiops truncatus is the only bottlenose dolphin species occurring within European 

coastal waters (Hammond et al. 2012). Bottlenose dolphins are protected under European 

Union’s Habitats Directive (92/43/22C) where they are listed in Annex II as a species whose 

conservation requires the designation of Special Areas of Conservation and in Annex IV as in 

need of strict protection. They are observed from Iceland to the Strait of Gibraltar as well as 

in the Mediterranean Sea and the Black Sea (Hammond et al. 2012). The species occurs both 

in pelagic and coastal areas (Hammond et al. 2013) where it can be impacted by increasing 

human activities (e.g. Pirotta et al. 2013). Three resident communities are found in French 

coastal waters of the Atlantic and the English Channel: two small communities (tens of 

individuals) in the Iroise Sea (one off Sein Island and the other one off Molene Island, Liret 

2001), and a community in Normandy coastal waters (the Normano-Breton gulf, also known 

as the gulf of Saint-Malo and named the gulf hereafter, Figure 3.1 in the material and methods 

section). 

 

In this chapter, we focused on bottlenose dolphins of the Normano-Breton gulf, which 

remain poorly known although they are the most commonly encountered cetacean species in 

the area (GECC, personal communication). They are genetically isolated from the 

neighbouring communities in the United-Kingdom and Ireland (see Chapter 5). Furthermore, 
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they inhabit an area of special interest. First, a marine park is under creation. A marine park is 

a marine protected area (IUCN category V “protected seascape”), which promotes sustainable 

development of human activities together with biodiversity monitoring and protection. 

Second, human activities are increasing in the area, several large-scale marine renewable 

energy constructions are planned in the upcoming years. The construction of wind farms in 

the North and Baltic Seas has impacted the distribution of harbour porpoise (Phocoena 

phocoena), and their displacement was linked to the loud sound produced by pile-driving 

events (Carstensen et al. 2006; Tougaard et al. 2009). In this context, it is important to carry 

out studies on the bottlenose dolphin community in the gulf several years prior to the 

beginning of the building of these extended wind farms to gather benchmark data on the 

community before any potential impacts are manifested. 

 

The goal of this study was therefore to provide baseline knowledge on social structure 

and abundance of this bottlenose dolphin community both for its monitoring and management 

and for research questions on the drivers of social structure. Despite being extensively 

studied, social structure research projects in different habitats across the broad range of 

bottlenose dolphins can contribute towards a better understanding of the forces shaping 

sociality in the species. First, grouping patterns were examined and the social structure of the 

community was investigated using association and lagged association rate analyses. It is 

essential to define whether there were any completely discrete social clusters before 

estimating abundance to determine if it is relevant to estimate it for the whole community or 

for the different social clusters. The second objective was to estimate the size of the 

community frequenting the gulf using mark-recapture models.  
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2) Material and methods 

 

a) Surveys and photo-identification 

From 2006 to 2010, year-round boat surveys were performed in the Normano-Breton gulf, 

Normandy, France by the GECC (Groupe d’Etude des Cétacés du Cotentin) whenever sea 

state was favourable (i.e. sea state < 3 Beaufort). The aim of these surveys was to photo-

identify bottlenose dolphins using the gulf waters. From 2007 to 2010, Global Positioning 

System tracks of the surveys were recorded together with observation effort and dolphin 

group encounter data. The search effort (i.e. the gps track records of the boat when dolphins 

were not followed) was represented in R version 3.0.0 (R Development Core Team 2013) 

using the marmap package (Pante & Simon-Bouhet 2013, Figure 3.1). The first contact point 

was reported on the map for each group encounter. The study area was not homogeneously 

surveyed during the study period. At first, surveys were initiated within the southern part of 

the gulf. Then the survey area was extended to the central part of the gulf from 2007 onwards. 

A single survey week was conducted in the northern part in 2007 and the surveys were 

extended to the northern area in 2008. In 2008 and 2009 the whole gulf was surveyed, but the 

spatio-temporal coverage was not homogenous. In 2010, the whole area was surveyed 

regularly. 

 

 

 

 

 

 

 

 



Chapter 3 – Social structure and abundance 

 

  

57 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Location of the study area, distribution of survey effort (i.e. boat gps trackings 

when searching for dolphins) and location of sightings of bottlenose dolphins from 2007 to 

2010.  

 

During surveys, dorsal fins and upper backs of encountered individuals were 

photographed. Individuals were identified using natural marks: scars, nicks and scratches on 

their dorsal fins (Würsig & Würsig 1977; Würsig & Jefferson 1990). A catalogue was created 

and used to re-identify individuals. When available both sides of the dorsal fin were included 

in the catalogue. A marking level (M), according to the number and size of the nicks, was 

attributed to each individual (Figure 3.2). It varied from M1 for individuals with a smooth 

dorsal fin with scratches to M4 for strongly marked individuals (numerous and big nicks). 

Individuals with a smooth dorsal fin and without any or few slight scratches were considered 

as unmarked and were not entered in the catalogue. Quality of the fin photographs was 

assessed using three grades (excellent, good and poor) which depended on several criteria in 

particular the focus, angle of the animal, presence of water splashes, proportion of the fin out 
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of the water and the distance to the photographer. Only good and excellent fin photographs, 

taken on either side of the fin, were used for photo-identification. If there was any doubt in the 

identification, dolphins were not identified. As several people worked on photo-identification 

data, in order to minimize errors, I double-checked all the identifications over the whole 

period. We calculated the cumulative number of identified dolphins for each year.  

 

 

Figure 3.2. Bottlenose dolphin marking levels. 

 

b) Social structure 

Social structure was investigated using data collected between 2006 and 2010. 

Individuals were considered associated if they were observed in the same group. A group was 

defined as all dolphins within an area of 100 m radius involved in similar behavioral activities 

(Wells et al. 1987). A sighting refers to the encounter of a group or the encounter of an 

individual within a group. Group size was estimated visually by at least two experienced 

observers. Photo-identification work started when the first dolphin was spotted, it lasted as 

long as the dolphins were in the sight of the observers and ended usually when the surveyors 

decided that they had enough photographs of the animals or when dolphins showed boat 

avoidance behavior signs. Attempts were made to photograph all the animals, whatever their 

levels of markings. The statistical analyses conducted here are robust to the non-identification 

of some members of a sampling unit (see below). Thus, we did not exclude any group from 

the analyses (e.g. based on the proportion of individuals photographed). Social structure 

analyses were run using SOCPROG 2.4 (Whitehead 2009a) implemented in Matlab 7.6.0. 

(Mathworks Inc., Natick, MA, U.S.A.). A daily sampling period was used to avoid 

demographic effects (such as death, emigration or immigration) and we excluded the 

M1 M2 M3 M4 
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individuals that were identified only less than five occasions to minimize the bias due to these 

infrequently sighted individuals. However, the choice of an appropriate cut-off is not 

straightforward and various values were used in the literature (e.g. Lusseau et al. 2006; de 

Stephanis et al. 2008c; Wiszniewski et al. 2009; Ansmann et al. 2012a). Whitehead 

recommends a minimum of five identifications (Whitehead 2008a). We performed analyses 

on individuals identified in at least five to twelve sampling periods. Since results with six to 

twelve identifications were similar to those with five identifications but included far less 

individuals and were therefore less representative of the field data, we only present here the 

results that include animals identified in at least five sampling periods. Individuals with a 

smooth dorsal fin (M1) were excluded from analyses as their scratches could change quickly. 

Moreover, as their scratches are only visible on one side, it is difficult to identify them on 

both sides and this could lead to misidentifications. Therefore, only marked adults and sub-

adults were considered in these analyses as newborns and young animals are generally 

difficult to identify due to their low level of marking. 

 

The Half-Weight Index (HWI) was used to quantify the strength of associations 

between pairs of individuals. This index minimizes bias if not all the associates are identified 

(Cairns & Schwager 1987). Since the Half-Weight Index is commonly used in bottlenose 

dolphin social structure studies this makes comparisons between studies easier. 

The index is described by:  

)(2/1 YbYaX

X
HWI


  

where X is the number of groups where dolphins a and b were seen together, Ya is the 

number of groups where dolphin a was observed without dolphin b, and Yb is the number of 

groups where dolphin b was observed without dolphin a. It ranges between 0 (a and b never 

seen together) to 1 (a and b always observed together). Standard deviation (SD) and 

coefficient of variation (CV) of the HWI were also calculated. 
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A Monte Carlo permutation test was conducted to determine whether observed 

association patterns were significantly different from random association patterns using the 

recommendations of Bejder et al. (1998) with modifications included in Whitehead (1999, 

2008a, 2009a). The matrix of observed association indices was permuted within sampling 

periods until P stabilized at 10,000 permutations with 100 flips. The test was then run three 

additional times to ensure P stability. A higher standard deviation (SD) of the observed 

association indices in comparison to the SD of permuted data indices shows that long-term 

preferred and/or avoided associates were present in the community (Whitehead 1999, 2008a).  

 

Reliability of the social structure representation was assessed using the Pearson 

correlation coefficient (r) and the social differentiation (S) (Whitehead 2008a, b). We 

estimated the accuracy of the social structure representation by correlating estimated 

association indices with their true value using the maximum likelihood estimator (r = 0 for an 

inaccurate representation; r = 1 for an excellent representation). The social differentiation, 

which is the coefficient of variation of association indices estimated using maximum 

likelihood, gives the variability of association indices in the community. A value of S close to 

0 indicates that association indices are homogenous in the community and a value of S equal 

or greater to one that they are highly variable. Fewer data are needed to accurately reconstruct 

social structure when the social differentiation is moderate or high (i.e. superior to 0.5, 

Whitehead 2008a, b). Standard Errors (SE) were calculated for r and S from bootstrap with 

1,000 replications. 

 

The social structure of the community was examined using a hierarchical cluster 

analysis with the average linkage method on the HWI matrix. The average linkage method is 

considered as the most accurate method to display social structure in clusters because outlier 

distances have less impact on the results than with single or complete linkage methods 

(Milligan & Cooper 1987; Whitehead & Dufault 1999). It is therefore the most commonly 

used method in social structure analyses (e.g. Lusseau et al. 2003; Wiszniewski et al. 2009; 

Augusto et al. 2011). We assumed that a cluster with a cophenetic correlation coefficient (i.e. 

the correlation between observed dyadic association indices and the indices represented in the 

dendrogram) higher than 0.8 indicated a reliable separation between clusters (Whitehead 
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2008a). The most parsimonious cut-off in the cluster was defined using the division that 

maximizes the modularity coefficient Q (Newman 2004; Lusseau 2007; Whitehead 2008a) 

which is defined as the difference between the proportion of the total association measured 

within clusters and the expected proportion if pairwise association indices were randomly 

distributed. Therefore, this method divides the individuals into clusters where association 

indices are higher among members of the same cluster than expected by chance. The analysis 

takes into account differences of gregariousness (i.e. mean number of associates of an 

individual) among individuals. A modularity coefficient of 0 shows a random group structure. 

A value equal to or greater than 0.3 indicates a good division between clusters (Newman 

2004). We ran a Mantel test to test if association indices were significantly higher inside each 

of the social clusters than between them in R. 3.0.0 (R Core Team 2013) using ade4 package 

(Chessel et al. 2004; Dray & Dufour 2007; Dray et al. 2007). We compared mean association 

indices of individuals within and between clusters. 

 

In order to visualize if social clusters were spatially distributed, the median 

latitude/longitude of the sighting positions of each individual was calculated. As we included 

individuals with few identifications (minimum identifications set to five), we used the median 

position because it is more robust to outlier positions than the mean. We also calculated the 

Median Absolute Deviation (MAD) to account for the variability in the sighting positions 

(Venables & Ripley 2002). Median position and MAD for each individual were then 

represented on a map that also indicated its social cluster to examine whether ranging 

differences can account for social structuring of the community. 

 

To determine the temporal stability of associations among individuals, we calculated 

variations in standardized lagged association rates (SLAR, Whitehead 1995; Whitehead 

2008a). SLAR is the probability, given that a and b are associated at time 0, that b will be 

randomly chosen as associate of a after a specified time lag. The probability was averaged 

over all individuals. The SLAR is robust to the non-identification of all the associates. This 

average standardized association rate was estimated by g(τ) as defined by Whitehead (1995) 

and plotted in relation to time lag (in days). All individuals (even rarely observed individuals) 

were considered for this analysis as poorly observed animals will have little impact on the 
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SLAR estimation (Whitehead 2008a). SLAR was compared to the standardized null 

association rate (NAR), which represents the SLAR when there are no preferred associations, 

to determine whether the patterns of associations were non-random (Whitehead 1995, 2008a). 

Then, four exponential decay models of temporal stability were fitted to the dataset 

(Whitehead 1995, 2008a). These models take into consideration two types of associations: 

constant companionships (that last until death) and casual acquaintances (associations lasting 

from a few days to a few years). Each model was composed of a combination of these two 

types of associations (Table 3.1 in the result section). The rapid dissociations (associations 

lasting a few hours) were not incorporated directly in the models as they were confounded 

with gregariousness. Therefore each of the four models may or may not have included rapid 

disassociations (Whitehead 2008a). The model that best described the temporal dynamics of 

the social structure was selected by the Quasi-Akaike Information Criterion (QAIC, 

Whitehead 2007). The precision of the parameters was estimated using jackknife (Efron & 

Stein 1981; Whitehead 1995, 2008a).  

 

c) Abundance 

Mark-recapture models were applied to photo-identification data to estimate the size 

of the community. For this analysis, only individuals of marking levels M3 and M4, 

unambiguously identifiable on both sides, were included to minimize identification errors. We 

estimated the total community size using survey data collected from July to September 2010 

over the whole study area of the Normano-Breton gulf. For the 2006-2009 period, no 

particular effort was made to survey the whole gulf as regularly as in 2010 making it 

impossible to reliably estimate abundance without spatial bias.  

During the 2010 summer season, seven capture occasions were conducted from July 

10th to September 18th 2010. Each capture occasion was composed by two whole day 

surveys (one survey in the northern part and another in the southern and central parts of the 

gulf) in order to cover the whole area. Efforts were made to minimize the time between each 

of the two surveys inside a capture occasion but it varied with weather conditions, they were 

usually carried out one to two days apart. In two occasions, surveys were carried out 
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simultaneously on the same day, using two boats. Summer was chosen for abundance 

estimation as weather permits more regular surveys than during other seasons. 

 

Abundance of well-marked individuals (N) was estimated in MARK (White & 

Burnham 1999). Among the standard sequential mark-recapture models for closed 

populations (Otis et al. 1978), we compared models Mo, Mh, Mt, and Mth. Capture 

probabilities could vary between individuals (h) and with time (t) because of a variety of 

factors such as avoidance or attraction to the boat (Hammond 1986), individual differences in 

home ranges, variations of survey effort and different photographers. We did not test models 

that assume a behavioral response to capture (Mb, Mtb, Mbh, Mtbh) as photo-identification is a 

non-invasive method. It is therefore common to exclude models assuming a behavioral 

response in photo-identification studies (e.g. Wilson et al. 1999; Daura-Jorge et al. 2013). 

Heterogeneity among individuals (h) was modeled using two mixtures. Standard models (Mo 

and Mt) were built from finite mixture models (Mh and Mth), setting the mixture parameters to 

1.  

The following assumptions were made for the tested models: 

1) The population was closed demographically (no death or birth) and geographically 

(no emigration or immigration) during the time period considered. 

2) All marked individuals were correctly identified and recorded on each capture 

occasion. 

3) Marks were not lost and marked individuals were not preferentially photographed. 

The sampling period was short (two months), so there was a strong probability that the 

demographic closure assumption was respected. Dolphins are indeed long-lived animals with 

a low reproduction rate. Emigration and immigration could not be totally excluded but could 

be considered minimal due to the short sampling period. The closure assumption was 

confirmed using Close Test (Otis et al. 1978; Stanley & Burnham 1999). Assumptions 2 and 

3 were fulfilled as only well-marked and easily-identified individuals with good to excellent 

fin photographs were included in analyses. Mark changes could occur, however as the 
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sampling period was short and the surveys were regular, we assumed that any mark changes 

could be detected.  

Models were compared using AICc (which is adjusted to small sample size, Hurvich & 

Tsai 1989; Burnham & Anderson 2002, Table 3.2). We calculated AICc weights, which 

measure the support of a given model relative to the others. Based on the AICc weights, we 

estimated the average abundance across all models (Burnham & Anderson 2002). Log-normal 

confidence intervals were calculated following the formulas described in Lukacs (2013). 

 

Abundance estimation (N) run in Mark was only based on well-marked individuals. 

Therefore, the mean proportion of well-marked individuals (M3 and M4) on the total number 

of fins (M1 to M4 and unmarked fins) was estimated. This was performed for each photo 

showing at least two dorsal fins. The mean proportion was calculated as follows:  

i

i
n

i t

m

n




1

1
̂  

where n is the number of photos in the dataset, mi is the number of heavily marked 

individual fins on photo i, ti is the total number of individual fins on photo i. To estimate the 

whole community size (N’), N was adjusted with the calculated proportion: 
̂

'
N

N  . 

Confidence intervals were corrected following Whitehead et al. (1997). 
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3) Results 

a) Survey effort and photo-identification 

Between 2006 and 2010, 201 bottlenose dolphin groups were recorded on 134 field 

days. Photos were taken during 199 group encounters. A mean of 171 photos (SD = 216) per 

group were of sufficient quality to allow identification of at least one individual. A total of 

336 marked individuals (M2, M3 and M4) and 361 M1 individuals were identified. Mean 

visually estimated encounter group size in the field was 26 (SD = 18, range: 1 to 100). 56% of 

visually estimated individuals in the groups were of marking levels M2 to M4 and were 

photo-identified. Mean identified M2, M3 and M4 individuals per group was 14 (SD = 13, 

range: 1 to 87). Attempts were made to photograph all individuals, it is however difficult to 

disentangle the proportion of missed individuals from the proportion of M1 (only scratches) 

and unmarked individuals. Among the 336 marked individuals, 32% were seen only during 

one year, 18% during two years and 50% during three or more years. The discovery curve of 

new well-marked (M3 and M4) individuals sharply increased between 2006 and 2007 (Figure 

3.3). This increase corresponded to the expansion of the study area. It then tended to stabilize, 

indicating that we had identified most of these individuals and that immigration could be 

considered as low. However, when we included slightly marked (M2) individuals, the curve 

was still increasing in the recent years. These new individuals could either be previously 

smooth dorsal fin individuals (M1 or unmarked) that were already in the gulf or immigrants. 

 

 

Figure 3.3. Cumulative number of identified individuals from 2006 to 2010 according to their 

marking levels (M2, M3 and M4). 
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b) Social structure 

Eight group encounters were removed from the analyses as no marked individuals 

(M2, M3 or M4) or no individual identified in at least five sampling periods were included. 

Therefore 191 group encounters were used in the social structure analyses. A total of 206 

marked dolphins (M2, M3 and M4) were identified in at least five sampling periods. They 

represented 88.92% (SD = 15.32) of all the marked dolphins identified in each group. We 

excluded from the analyses 130 dolphins that did not meet the minimum of five 

identifications criteria. The mean number of observations of all marked dolphins (M2, M3 or 

M4) was 6.41 (SD = 5.34). When considering individuals identified at least five times, the 

mean number of observations of an individual was 10.12 (SD = 5.42) and the maximum was 

29 observations. 

The mean Half-Weight Index (HWI) was 0.097 (SD = 0.136, CV = 1.396). This 

standard deviation was higher than the standard deviation obtained from permuted data (SD = 

0.132, P<0.001), suggesting that individuals did not associate randomly and that there were 

long-term preferred or avoided companions in the community.  

The correlation coefficient r between the true association indices and their estimates 

was 0.68 (SE = 0.04) indicating that the estimated association coefficients adequately 

represented social structure. Social differentiation was S = 0.95 (SE = 0.03), which indicated 

that relationship patterns were highly variable. S² * H (H: mean number of associations per 

individual) = 0.95² * 211 = 190, which is well above 5, indicating an excellent ability to reject 

the null hypothesis of no preferred/avoided associations (Whitehead 2008b). Therefore, our 

analyses had good power to detect the social system (Whitehead 2008a, b).  

 

The cluster cophenetic correlation coefficient was 0.747, which is close to the 0.8 

threshold indicating an effective social structure representation (Figure 3.4, Whitehead 

2008a). Maximum modularity (Q = 0.320) at HWI = 0.085 provided a reliable separation in 

three different clusters (Figure 3.4, Newman 2004). One individual (represented by a black 

line in the Figure 3.4) was not assigned to any of the three clusters. However, this individual 

was mostly seen with individuals of the cluster “North” (83% of its identifications).  
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Figure 3.4. Hierarchical cluster analysis with the average linkage method of the Half-Weight 

Index matrices. Cluster division was obtained using maximum modularity controlling for 

gregariousness (modularity value was 0.320 and was maximized at HWI = 0.085 as indicated 

by the dashed line). Cluster Cophenetic Correlation Coefficient was 0.747. 

 

Mantel test confirmed that there were significantly more associations among 

individuals of the same clusters than among individuals of different clusters (r = 0.55, 

P<0.001). Mean HWI among individuals of the same clusters was about twice of the HWI 

averaged on all individuals. Moreover, the mean association index between individuals of 

clusters “North” and “South” was very low (HWI = 0.007, SD = 0.029, Figure 3.5). The 

dendrogram (Figure 3.4) also showed that there were strong associations (equal or above 0.5) 

among a few individuals (1.93% of the total possible associations). 
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Figure 3.5. Mean Half-Weight Index calculated between all the individuals (ALL, light grey 

shading and filled square), between individuals of the same social cluster (no shading) and 

between individuals of two distinct social clusters (grey shading). M = Minquiers, N = North, 

and S = South. Error bars indicate Standard Deviation. 

 

The map showing the median geographical position of each dolphin’s sightings as a 

function of their social cluster indicated that the clusters showed a degree of spatial 

segregation (Figure 3.6). Dolphins from cluster “North” were mainly observed in the northern 

part of the gulf, dolphins from cluster “Minquiers” in the center part, and individuals from 

cluster “South” were mainly observed in the southern part of the gulf. However, error bars 

(median absolute deviation) showed spatial overlaps between the localisations of individuals 

of different clusters.  
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Figure 3.6. Median latitude/longitude of all the sighting positions for each individual (points) 

and standard error of median absolute deviation (arrows). Color and symbol codes indicate 

the social cluster of each individual.  

 

The Standardized Lag Association Rate (SLAR) was different from the Null 

Association Rate (NAR) showing non-random temporal association patterns (Figure 3.7). The 

SLAR curve and error bars indicated high variability in the association durations. The curve 

dropped drastically after a few days and in spite of a high variability, continued to decrease 

until 100-200 days. The curve stayed slightly above the NAR indicating the existence of a 

small proportion of long-term companions. The model that best described the temporal 

stability of associations included casual acquaintances and constant companions (Table 3.1). 

The model indicated that the duration of the casual acquaintances was in the order of 80.56 

(SE = 77.35) days (1/a1). Because of the high SE and the variability of the SLAR curve one 

need caution when interpreting the results. In addition, there were also possibly rapid 

dissociations. 
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Table 3.1. Models of temporal stability of associations fitted to the dataset ranked by QAIC 

(Whitehead 1995, 2008a). CC: constant companionships, CA: casual acquaintances.  

Models Components Parameter estimates and 

SE  

 QAIC ΔQAIC 

a2 + a3*e
(-a1*τ)

 CC + CA a1 = 0.012 ± 0.012  28874 0 

  a2 = 0.007 ± 0.002    

  a3 = 0.010 ± 0.003    

a3*e
(-a1*τ) 

+ a4*e
(-a2*τ)

 2 levels of CA a1 = 1.525 ± 3.860  28883 7 

  a2 = 0.000 ± 33.660    

  a3 = 0.059 ± 0.352    

  a4 = 0.012 ± 2.176    

a2*e
(-a1*τ)

 CA a1 = 0.001 ± 0.000  28907 33 

  a2 = 0.012 ± 0.003    

a1 CC a1 = 0.009 ± 0.002  29097 223 
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Figure 3.7. Standardized Lag Association Rate (SLAR) for all the individuals is compared to 

the Null Association Rate (NAR) and the best fitting model (casual acquaintances and 

constant companions). Error bars were generated by the jackknife technique.  

 

c) Community size 

As social clusters were not completely discrete, abundance was estimated for the 

whole community. The closure assumption was verified according to the Closure Test of 

Stanley and Burnham (1999) (P = 0.68), and the Closure Test of Otis et al. (1978) (P = 0.98). 

Model Mt and Mth had the smallest AICc (ΔAICc < 2) and accounted for all the AICc weights 

(Table 3.2). After model averaging, the estimated number of well-marked individuals (M3 

and M4) was N = 124 (95% confidence interval: 116-141). The mean proportion of well-

marked animals on the total number of fins was θ = 0.29 (CV = 0.10) giving an estimated 

total number of N’ = 420 dolphins (95% confidence interval: 331-521, SE = 0.11 and CV = 

46.92) in 2010. 
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Table 3.2. Closed population models for abundance estimation ranked by the lowest AICc. 

Model notation: p: probability of capture, c: probability of recapture, constant parameter: (.), 

time varying parameter: (t), π: mixture parameter, A and B refer to the two mixtures, N: 

abundance estimation. SE refers to the Standard Error and var to the variance. 

 

Models AICc ΔAICc AICc 

weigth 

Model 

Likelihood 

Deviance N SE(N) var(N) 

Mt (N, p(t) = c(t))   49.24 0.00 0.67 1.00 118.35 123.10 5.53 30.58 

Mth (N, π, pA(t) = 

cA(t), pB(t) = cB(t)) 

50.63 1.38 0.33 0.50 103.18 127.06 6.60 43.56 

Mo (N, p(.) = c(.))   77.45 20.21 0.00 0.00 158.73 124.77 5.87 34.46 

Mh (N, π, pA(.) = 

cA(.), pB(.) = cB(.)) 

81.08 31.84 0.00 0.00 158.33 129.25 11.23 126.11 

 

 

4) Discussion 

 

a) A fission-fusion social structure 

As described in other bottlenose dolphin communities studied so far, the Normano-

Breton gulf community lives in a fission-fusion society (Wells et al. 1987; Connor et al. 

2000; Lusseau et al. 2006). Associations between individuals were in majority fluid and 

weak, and in the range of the association indices observed in other fission-fusion communities 

(i.e. from 0.06 to 0.2, Wells et al. 1987; Smolker et al. 1992; Connor et al. 2000; Chilvers & 

Corkeron 2002; Wiszniewski et al. 2009). The temporal patterns of associations were also 

typical of a fission-fusion society where individuals have mainly short-term associates and a 

smaller proportion of constant companions. Our results also indicated a gradient in the 
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strength of associations as well as a high variability in relationship durations in the Normano-

Breton gulf community. Individuals may therefore adjust grouping patterns according to 

ecological conditions to maximize fitness gains as observed in other fission-fusion species 

(e.g. in spotted hyenas Smith et al. 2008). Under the general pattern of fission-fusion 

societies, bottlenose dolphin communities show high variations in relationships among males, 

females and between males and females at both an inter- and intra-population level (Connor et 

al. 2000; Lusseau et al. 2003; Wiszniewski et al. 2010b; Connor et al. 2011; Wiszniewski et 

al. 2012a). It is likely that differences observed among communities are related to local 

ecological, breeding, anti-predator constraints and possibly anthropogenic activities which can 

be highly variable throughout the wide geographical range of the bottlenose dolphin (Lusseau 

et al. 2003; Möller & Harcourt 2008; Augusto et al. 2011; Ansmann et al. 2012a; 

Wiszniewski et al. 2012b). As found in other communities, stable and high association indices 

in the Normano-Breton gulf community could indicate male alliances (e.g. Connor et al. 

1992; Connor et al. 1999; Möller et al. 2001; Krützen et al. 2003; Connor et al. 2011). To 

date, however, alliances have not yet been reported in North-East Atlantic communities 

(Moray Firth, Scotland and Sado estuary, Portugal, Wilson 1995; Augusto et al. 2011). As we 

excluded individuals with a smooth dorsal fin (M1), which is typical for juveniles, the 

constant companions likely do not reflect mother and calf bonds in their first years of life. 

Moderate HWI could indicate female bands (Wells et al. 1987; Connor et al. 2000; Möller & 

Harcourt 2008). Associations between males and females are not stable in most communities 

and tend to be related to reproduction (Connor et al. 1992; Smolker et al. 1992; Owen et al. 

2002). In some communities, kin selection (Hamilton 1964) might promote preferential 

associations with relatives (Krützen et al. 2003; Wiszniewski et al. 2010b). The influence of 

the sex and genetic relatedness of the individuals on association patterns in the Normano-

Breton gulf will be investigated in the next chapter.  

 

b) Possible ecological drivers of large group sizes 

Encountered group sizes (mean = 26) were particularly high and variable (range: 1 to 

100) for a resident coastal community. Similar group sizes were observed in highly mobile 

communities along coastal open habitats (e.g. a mean of 20 individuals along the California 

coastline, Defran & Weller 1999). However, in contrast to these mobile and wide-ranging 



Chapter 3 – Social structure and abundance 

 

  

74 

 

communities, photo-identification work indicated inter-annual site fidelity in the Normano-

Breton gulf. Site fidelity is supported by stable isotope data performed on biopsy samples 

which did not indicate important seasonal trends (see Chapter 4). In most studied resident 

coastal communities of bottlenose dolphins (Tursiops sp.), group sizes ranged from 5 to 8 

when groups were defined similarly as in our work (Wells et al. 1987; Wiszniewski et al. 

2009; Bouveroux & Mallefet 2010; Ansmann et al. 2012a; Fury et al. 2013). Caution should 

however be taken when comparing group sizes as group definition can differ among studies 

(Connor et al. 2000).  

Predation risk could not explain these large group sizes, as killer whales or possibly 

“dolphin-attacking” shark species are not observed in this area and no bite marks were ever 

recorded in contrast with communities exposed to shark attacks (Heithaus 2001). Delphinids’ 

grouping patterns have also been related to prey availability and/or resource predictability 

(Lusseau et al. 2003; Lusseau et al. 2004). In Doubtful Sound (New Zealand), a large mean 

group size (mean = 17) together with a high proportion of stable associations might allow a 

high level of cooperation and efficient information transfer in a low productive habitat with 

scarce resources (Lusseau et al. 2003). However, larger group sizes can also be the results of 

predictable resources. In Moreton Bay (Australia), dolphin groups composed by individuals 

feeding on trawler discards, a predictable food source, were larger than dolphin groups 

composed by individuals that did not interact with fisheries (Chilvers & Corkeron 2001; 

Ansmann et al. 2012a). In addition, killer whales (British Columbia) and bottlenose dolphins 

(Moray Firth, Scotland) groups were smaller in years where less salmon was available 

(Lusseau et al. 2004). We could therefore state two hypotheses for the grouping patterns in 

the Normano-Breton gulf. First, resources could be scarce and patchy, requiring a high level 

of cooperation between individuals. However, we would predict more stable and stronger 

relationships than the ones recorded. The alternative hypothesis is that benefits of grouping 

patterns (share of knowledge, information exchange, hunting cooperation) could outweigh the 

costs (feeding competition) as a result of resource availability and/or predictability. 

Individuals may also adjust grouping patterns according to ecological conditions and 

behavioral activities as in other fission-fusion species (Wittemyer et al. 2005; Smith et al. 

2008). This flexibility could explain the important variation of group sizes. Additional data, 

on habitat productivity, ecology and behavior of the dolphins are needed to investigate these 

hypotheses.  
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c) Division in three social clusters 

We showed that the Normano-Breton gulf bottlenose dolphins were divided in three 

social clusters. It is important to evaluate whether non-social or indirect social factors could 

not bias the results when conducting clustering analyses (Cantor et al. 2012). Uneven effort 

could have affected the sighting histories of individuals and separated individuals sighted in 

different years.  However, as the whole area has been surveyed since 2008, we assumed that 

the partial coverage of the studied area of the first year, and to a lesser extent of the second 

year of survey, did not greatly affect the clustering results. Moreover, individuals showed 

inter-annual site fidelity. Therefore, turn-over population factors, as observed for Guiana 

dolphins, could not account for the division in social clusters (Cantor et al. 2012). We 

investigated whether the clusters were spatially segregated to test if the observed social 

division could mainly be driven by shared use of space (Lusseau et al. 2006). Social clusters 

showed a degree of spatial segregation since individuals of each cluster were mainly observed 

in a specific area of the Normano-Breton gulf (i.e. either the northern, the central or the 

southern part of the gulf depending on the cluster). Mean association indices between 

individuals of the southern cluster and the northern cluster were particularly low, which 

indicated a degree of separation (but not isolation) between these clusters. However, ranges of 

individuals from different clusters largely overlapped, which was expected given the high 

mobility of dolphins. The observed division in clusters could therefore be linked to a 

combination of different habitat use and social preferences. These spatial results should be 

interpreted with great caution as a minimum of five identifications is low to draw conclusions 

on ranging patterns. Indeed, a minimum of ten to thirty identifications was used in other 

studies (e.g. Frère et al. 2010b; Wiszniewski et al. 2012b). The low number of identifications 

also prevented from using more appropriate methods to estimate the home ranges of highly 

mobile individuals and core areas, in particular the fixed-kernel density method (Worton 

1989), which has been used in social structure studies on delphinids or other mobile species 

(e.g. Wiszniewski et al. 2012b; Best et al. 2013; Carter et al. 2013). The approach used here is 

exploratory. Spatial segregation should be further investigated once enough data per 

individual are gathered, which will allow to use fixed kernel home range analyses. Social 

division in different clusters is a common feature in bottlenose dolphin societies (Chilvers & 

Corkeron 2001; Lusseau et al. 2006; Wiszniewski et al. 2009).  
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Division into social clusters was linked to ranging patterns in several communities 

(Lusseau et al. 2006; Wiszniewski et al. 2009). In the Moray Firth community (Scotland), 

division is maintained in areas where dolphins of both clusters are observed, indicating that 

social affiliations are not merely an artefact of habitat use (Lusseau et al. 2006). Moreover, 

even if individuals have distinct ranging patterns, we could not rule out social preferences 

within clusters. Fine-scale site fidelity can create the opportunity for social preferences to 

develop, for example, as a result of shared behavioral strategies (Ramos-Fernandez et al. 

2006; Wiszniewski et al. 2009). In other areas, division in social structure may have arisen 

and may have been maintained in sympatry by different foraging strategies such as interaction 

or not with fisheries (Chilvers & Corkeron 2001; Ansmann et al. 2012a; Daura-Jorge et al. 

2012) or hunting techniques (e.g. the use of sponges, Mann et al. 2012). Multiple other factors 

such as age, sex and relatedness are also likely to contribute to bottlenose dolphin social 

affiliations (Möller & Harcourt 2008; Wiszniewski et al. 2010b; Mann et al. 2012; Fury et al. 

2013). Here, no interaction with fisheries has yet been reported (GECC, personal 

communication). Contrary to other communities (Ansmann et al. 2012a; Daura-Jorge et al. 

2012), it is therefore unlikely that variable interactions between bottlenose dolphin groups and 

fisheries could explain the clustering observed here. However, bottlenose dolphins are known 

to have various foraging strategies linked to both habitat type and learning during juvenile life 

(Sargeant & Mann 2009; Torres & Read 2009). Thus, individuals of different clusters may 

target different prey or feeding habitats. Ecological differences among social groups in the 

Normano-Breton will be investigated using stable isotope analyses in the next chapter.  

 

d) Abundance 

In summer 2010, the estimated abundance over the whole area was 420 (95% CI: 331-

521) individuals, making this community one of the largest observed along European coastal 

waters. In Europe, the size of most coastal communities of bottlenose dolphins ranges from 

around tens of individuals [Iroise Sea, Brittany, France (Liret 2001); Sound of Barra, Outer 

Hebrides, Scotland (Grellier & Wilson 2003); Sado estuary, Portugal (Augusto et al. 2011)], 

100-250 individuals [Moray Firth, Scotland (Wilson et al. 1999; Cheney et al. 2012); 

Shannon estuary, Ireland (Berrow et al. 2012); Cardigan Bay, England (Pesante et al. 2008)] 

to up to 300-350 individuals [Gibraltar, Spain (Chico Portillo et al. 2011)]. Because of uneven 
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effort, abundance was not estimated for other years (i.e. 2006 – 2009). From now on, the 

sampling protocol of 2010 should thus be conducted in order to set a long-term demographic 

monitoring of these dolphins. Once sufficient years of photo-identification surveys in the 

whole gulf are conducted, the Pollocks’ Robust Design (Pollock 1982; Kendall et al. 1997) 

could be an effective method to estimate both abundance, survival and temporary emigration 

(e.g. Verborgh et al. 2009; Daura-Jorge et al. 2013). 

 

e) Monitoring and conservation 

This study is the first step of a long-term monitoring. It provides important baseline 

knowledge about the social dynamics and abundance of bottlenose dolphins within the 

Normano-Breton gulf prior to important anthropogenic activities such as the building of 

several large-scale marine renewable energy projects. Studies conducted before, during and 

after the implantation of wind and tide generator farms should enable to assess the long-term 

consequences of these constructions on this community both in terms of social structure and 

demography. While the building phase can produce large acoustic disturbances, the sound 

produced by operating wind turbines is not expected to heavily impact toothed whales 

(Madsen et al. 2006), although studies are lacking on cetaceans other than harbour porpoises 

(Carstensen et al. 2006; Tougaard et al. 2009). However, long-term disturbance and slow 

recovery has been reported in harbour porpoises (Teilmann & Carstensen 2012). Rigorous 

long-term monitoring of the temporal variations of abundance and distribution, along with 

demographic parameters such as survival and calving rate, will be invaluable in detecting the 

effects of future human activities on this community. Moreover, the persistence of the social 

clusters and their ranging patterns should also carefully be monitored. As suggested by 

Lusseau et al. (2006), if social clusters show clear spatial or ecological segregation, models of 

population dynamics could take the social division into account as co-variates. In addition, as 

detailed in the introduction, social structure is likely driven by environmental factors. Thus, 

changes in the environment, for instance on the distribution and abundance of resources, 

could impact social structure (Blumstein 2012). Monitoring long-term social dynamics in the 

future will therefore help to understand eventual population responses to changes in 

ecological conditions (Parsons et al. 2009; Blumstein 2012; Foster et al. 2012).  
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Given the high abundance, and inter-annual site fidelity of bottlenose dolphins in the 

gulf, we suggest that a Special Area of Conservation should be designated for these dolphins. 

Habitat use analyses would be needed to spatially delineate the conservation area. Moreover, 

bottlenose dolphin is one of the main year-round top-predator in the gulf along with harbour 

seals (Phoca vitulina), grey seals (Halichoerus grypus) and seabirds (GECC, personal 

communication). The monitoring of bottlenose dolphins could therefore be used as a bio-

indicator of the Normano-Breton gulf ecosystem health (Hooker & Gerber 2004).  Finally, the 

factors shaping the social structure of this community will be investigated in the next chapter 

using genetic and stable isotope analyses. 
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1) Introduction 

Animal social structures are shaped by the trade-off between the benefits and costs of 

group living (see review in Krause & Ruxton 2002). While sociality can provide benefits such 

as increased foraging efficiency (e.g. Packer & Ruttan 1988), knowledge sharing (e.g. 

McComb et al. 2001; Safi & Kerth 2007) and reduced predation risk (e.g. Kelley et al. 2011), 

it can also incur costs such as competition for food resources or mating, and disease 

transmission (Wrangham et al. 1993; Clutton-Brock et al. 1998; Altizer et al. 2003; Clutton-

Brock 2007). Environmental variability can modify the costs and benefits of living in groups, 

leading to intraspecific or intra-population variations in social organization. For instance, 

resource availability or foraging techniques can lead to intraspecific social behavior variations 

(e.g. Karczmarski et al. 2005; Chaverri 2010; Beck et al. 2012). The same factors, in addition 

to seasonal changes, can modify a given population’ social structure (e.g. seasonal changes in 

food resources for elephants, Wittemyer et al. 2005; prey availability for spotted hyenas, 

Smith et al. 2008; the loss of an anthropogenic food resource for bottlenose dolphins, 

Ansmann et al. 2012a; or salmon abundance for killer whales, Foster et al. 2012). These 

extrinsic factors act in interaction with intrinsic behavioral factors. Individuals may prefer to 

associate with conspecifics with whom they share similar characters. Homophily can be based 

on age (e.g. Wey & Blumstein 2010), sex (see review in Ruckstuhl 2007), kinship (Hamilton 

1964; Holekamp et al. 1997; Wiszniewski et al. 2010b), reproductive condition (e.g. Möller 

& Harcourt 2008) or behavioral phenotypes (e.g. Croft et al. 2009; Mann et al. 2012). Social 

structure may have evolutionary impacts by influencing patterns of gene flow (Piertney et al. 

1999; Storz 1999; Pilot et al. 2010). 

In fission-fusion societies, although individuals may maintain long-term bonds with 

specific companions, associations are mainly temporary and show hourly or daily turn-overs. 

This highly flexible social organization can be strongly influenced by ecological factors 

(Couzin 2006; Lehmann et al. 2007; Smith et al. 2008). Bottlenose dolphin (Tursiops sp.) 

societies are fission-fusion (Connor et al. 2000). They are found in a wide range of 

environments from tropical to temperate areas, and shallow inshore enclosed estuaries to deep 

pelagic waters. Hence, large behavioral variations conditioned by ecological selection can be 

expected. Male mating strategies and social behavior vary both between and within 
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populations. In inshore Tursiops sp. and T. aduncus populations of Australia and inshore T. 

truncatus populations of the North-West Atlantic, males form alliances of varying degree of 

complexity, both between related and unrelated individuals, to compete for females (Krützen 

et al. 2003; Parsons et al. 2003; Connor et al. 2011; Wiszniewski et al. 2012a). In contrast, 

they do not seem to form alliances in the North-East Atlantic coastal population of Moray 

Firth (Wilson 1995). Females tend to form “bands” and share moderate bonds with related 

and unrelated females (Wells 1991; Frère et al. 2010b; Wiszniewski et al. 2010b) or with 

females in the same reproductive state (Möller & Harcourt 2008). Male and female 

relationships seem to be linked to reproduction (Smolker et al. 1992; Owen 2003). However, 

in a New Zealand fjord, the scarcity of resources, probably requiring a higher level of 

cooperation, is thought to have shaped stable mixed-sex groups (Lusseau et al. 2003). In 

addition, bottlenose dolphin feeding behavior, which is shaped by environmental 

characteristics (Torres & Read 2009) and learning during juvenile life (Sargeant & Mann 

2009), is also highly plastic. Shared behavioral strategies such as foraging techniques can also 

influence social organization (Ansmann et al. 2012a; Mann et al. 2012). Their complex social 

structure, together with ecological specializations, may have implications on gene flow and 

could lead to fine-scale population structure (Sellas et al. 2005; Ansmann et al. 2012b).  

The influence of ecology on social structure has been studied through direct 

observations of feeding behavior (Ansmann et al. 2012a; Mann et al. 2012). However, 

feeding specializations cannot always be observed visually, especially in temperate seas 

where water is generally not clear enough to monitor underwater behavior from the boat. In 

that context, stable isotopes such as sulfur (δ
34

S), carbon (δ
13

C) and nitrogen (δ
15

N) can 

provide indirect information of a consumer forage resources (see Chapter 2.1.b for more 

details on stable isotope analysis principles). Sulfur and carbon stable isotopes are indicators 

of feeding habitats and can separate inshore vs. offshore and pelagic vs. benthic food 

resources (Peterson & Fry 1987; Kelly 2000; Connolly et al. 2004). δ
34

S values varies from 2 

to 6‰ in terrestrial habitats to 21‰ in marine habitats (Peterson & Fry 1987). Stable isotopes 

of nitrogen are enriched in tissues of consumers relative to their food resources, and they can 

therefore provide information on consumer trophic position (Kelly 2000). They can also be 

used to discriminate between different habitats (e.g. pelagic vs. coastal, Chouvelon et al. 

2012).  
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Here, we focus on bottlenose dolphins in coastal waters of the English Channel which 

are part of the North-East Atlantic coastal genetic ecotype (Chapter 5). In the Normano-

Breton gulf, three social clusters have been identified in the previous chapter through social 

structure analyses based on photo-identification data. The animals formed large groups in 

comparison with other resident coastal bottlenose dolphins. In this chapter, we tested whether 

social behavior influenced gene flow using Bayesian clustering analyses on microsatellite 

markers and by examining mitochondrial haplotype frequencies. We then assessed if the three 

social clusters were ecologically distinct using stable isotope signatures of δ
13

C, δ
34

S and 

δ
15

N. Finally, the relative influence of sex, genetic relatedness and ecological similarity on 

association patterns was investigated. Stable isotope signatures were used as a proxy for 

foraging ecology and hence ecological homophily. We compared the social drivers of this 

coastal open-water population with other populations inhabiting various habitats and 

discussed the ecology and evolutionary processes that are likely to drive sociality. 

  

2) Material and methods 

a) Boat surveys, biopsy sampling and photo-identification 

98 biopsy samples were collected during boat surveys from September 2010 to August 

2012 using a crossbow (Panzer Barnett 5) and tips and arrows made by Finn Larsen (Danish 

Institute for Fisheries Research, see Figure 4.1a in the result section for sampling locations). 

Individuals were photo-identified (i.e. using the natural marks on their dorsal fins) at the time 

of sampling. Prior to sampling, they were also identified visually to avoid double sampling as 

much as possible. We only sampled adults, excluding mothers that had a calf of less than two 

years. Samples contained both skin and blubber tissues and were generally 6 mm in diameter 

and 1.5 cm long. Biopsy samples were collected under the permit 09/115/DEROG from the 

French ministry. Skin samples were frozen at -20°C. 
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b) Social structure 

The social structure of this population was analyzed in the previous chapter using 

photo-identification data collected between 2006 and 2010. In short, pairwise association 

coefficients (HWI: Half-Weight Index) were calculated between pairs of individuals sighted 

in at least five different days using SOCPROG (N = 213) (Whitehead 2009b). Using the 

dendrogram-based modularity method, three social clusters (“South”, “Minquiers” and 

“North” named according to the areas where the individuals were in majority observed, see 

Figure 4.1a for their locations) have been identified and each individual was assigned to one 

of the social clusters (see Chapter 3 for details on social structure analyses). Fifty-four biopsy-

sampled individuals were included in social structure analyses. The remaining sampled 

individuals were either sighted in less than five different days (N = 24) or were not identified 

either because they were unmarked or because the quality of the photo taken was not good 

enough to recognize the individuals (N = 12). Eight individuals were sampled twice.  

 

c) Genetic analyses 

DNA was extracted using NucleoSpin Tissue kits (Macherey-Nagel) following the 

manufacturer’s protocol. 92 samples were genotyped at 25 microsatellite loci including 20 

published markers and 5 markers newly-developed during this study (see Chapter 2.1.d for 

general information on microsatellite markers; Appendix A4.1 for PCR, genotyping 

conditions and the characteristics of the microsatellite loci; Appendix A4.2 for the method of 

discovery of new microsatellites and Appendix A4.3 for microsatellite marker characteristics 

for the studied individuals). Six samples out of the 98 biopsies were excluded from the 

analyses as they were duplicates according to photo-identification at the time of sampling. 

Two possible duplicates were included in the analyses to genetically confirm their identity. A 

682 base-pair (bp) portion of the mitochondrial control region was amplified and sequenced 

for all samples using primers Dlp1.5 (5’-TCACCCAAAGCTGRARTTCTA-3’) (Baker et al. 

1998) and Dlp8G (5’-GGAGTACTATGTCCTGTAACCA-3’) (as reported in Dalebout et al. 

2005). Amplification and sequencing conditions are available in Appendix A4.4 and general 

characteristics of mitochondrial markers are given in Chapter 2.1.b. Individuals were sexed 

using the SRY plus ZFX/ZFY fragments amplification method described in Rosel (2003). 
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Microsatellite marker quality 

To evaluate genotyping error rate, nine individuals were randomly selected for re-

amplification and scoring at all loci. The two duplicates, which were confirmed using the 

program Excel MicrosatelliteToolkit (Park 2001), were also included in error rate calculation. 

Ten percent of the dataset was thus re-analyzed. All individuals were successfully amplified 

for at least 23 loci and there was 0.56% of missing values in the dataset. Microchecker 2.2.3 

was used to check for null alleles* and scoring errors (Van Oosterhout et al. 2004). 

Departures from Hardy-Weinberg equilibrium (HWE) and linkage equilibrium were tested 

using 10 000 dememorizations, 1 000 batches and 10 000 iterations per batch in GENEPOP 

on the web version 4.2 (Raymond & Rousset 1995; Rousset 2008). Significance levels were 

corrected for multiple comparisons using the sequential Bonferroni technique (Holm 1979). 

 

Mitochondrial DNA sequences 

We generated consensus sequences for the 682-bp portion of the mitochondrial control 

region and looked for ambiguities with Sequencher 5.0 Demo (Gene Codes Corporation). 

Sequences were then manually edited with BioEdit 7.1.3.0 (Hall 1999). Unique haplotypes 

were identified using DNAsp 5 (Rozas & Rozas 1999).  

 

d) Genetic population structure 

Microsatellites 

Three clustering methods were applied to microsatellite data of all individuals (N=90) 

to determine the most likely number of populations and assign individuals to these: two 

Bayesian methods implemented in STRUCTURE (Pritchard et al. 2000) and TESS (Durand et 

al. 2009b) and a multivariate method, the Discriminant Analysis of Principal Components 

(DAPC) (Jombart et al. 2010). These three different approaches were used to ensure the 

robustness of the inferred results as determining the most likely number of clusters can be 

challenging (Guillot et al. 2009). STRUCTURE assigns individuals to clusters by minimizing 

Hardy-Weinberg and linkage disequilibria (Pritchard et al. 2000). TESS implements a 
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spatially explicit Bayesian model, which incorporates the geographic coordinates of the 

sampled individuals as a priori information (Durand et al. 2009b). The DAPC uses genetic 

similarity to cluster individuals and does not make any population genetic model assumptions 

(Jombart et al. 2010, see Chapter 2.2.b for more details on these three methods). 

In STRUCTURE, the admixture models with correlated and uncorrelated allele 

frequencies were run, without indicating any a priori information. Ten independent runs for 

each K value from 1 to 10 were carried out with a burnin-period of 50 000 iterations followed 

by 300 000 Markov Chain Monte Carlo (MCMC) steps. To determine the most likely number 

of clusters, we plotted LnP(D) (Pritchard et al. 2000), calculated ΔK (Evanno et al. 2005) in 

STRUCTURE Harvester v.0.5 (Earl & Vonholdt 2012), and examined individual membership 

proportion
2
 plots as well as the consistency across runs.  

The conditional auto-regressive (CAR) admixture model was run in TESS using a 

burnin of 20 000 steps followed by 120 000 MCMC steps. The number of clusters (K) to test 

was set from 2 to 10 and 10 replicate runs for each K were performed. Default parameters of 

the model were used: a spatial interaction parameter of 0.6 and a linear degree of trend. To 

select the most likely number of clusters, we plotted Deviance Information Criterion (DIC) 

values against K and examined plots of individual membership proportions. We also checked 

the consistency across runs. TESS does not test for K = 1, although it could be examined 

using the plots of individual membership proportions (i.e. if for K = 2 all individuals show 

membership proportions superior to 0.8 for the same cluster, it can be considered that the 

most likely number of populations is 1).  

DAPC was performed using the package adegenet 1.3.6 (Jombart 2008) in R 3.0.0 

following the recommendations of Jombart (2012).  The most likely number of clusters was 

determined with a K-means method using the lowest BIC (Bayesian Information Criterion) 

value and the elbow in the BIC curve.  Maximum number of clusters was set to 40 and all the 

principal components (PCs) were retained. In the DAPC, the genetic data were first 

transformed using Principal Component Analysis. Then, a linear discriminant analysis was 

performed on the retained PCs (in order to maximize genetic variation between clusters and 

                                                 
2
 For vocabulary simplification we use “individual membership proportions” to refer to the percentages 

of the genome of an individual that came from each population (i.e. admixture proportions, see Chapter 2.2.b for 

details). 
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minimize it within clusters). We retained 80% PCs to avoid over-fitting as well as all 

eigenvalues. 

The inclusion of closely related individuals can affect population structure analyses 

(Anderson & Dunham 2008). Therefore the Queller and Goodnight (Queller & Goodnight 

1989) relatedness coefficient (R) was estimated among individuals using KINGROUP v.2 

(Konovalov et al. 2004). Finally, STRUCTURE, TESS and DAPC were re-run after removing 

one individual from each pair of individuals showing a relatedness coefficient superior or 

equal to 0.45 as in Rosel et al. (2009).  

 

Mitochondrial DNA 

A haplotype network was constructed with the median-joining and maximum-

parsimony algorithms implemented in Network 4.6.0.0 (Bandelt et al. 1999). Haplotypes for 

each sample (N = 90) were displayed on a map created using the marmap package version 0.7 

(Pante & Simon-Bouhet 2013) in R 3.0.0 (R Core Team 2013) and haplotype frequencies per 

social cluster were also represented (N = 54). 

 

e) Ecological population structure 

Stable isotopes of sulfur (δ
34

S), carbon (δ
13

C) and nitrogen (δ
15

N) were analyzed in 

skin samples (N = 88, as for two samples we did not have enough skin for both genetic and 

stable isotope analyses). Prior to isotopic analyses, skin samples were cut in microscopic 

pieces and dried at 45°C in an incubator for 48 h. As lipids are depleted in 
13

C relative to 

other tissue components (De Niro & Epstein 1977), they were extracted from skin samples 

prior to stable isotopes analyses (SIA) of carbon and nitrogen but not of sulfur. Lipid 

extraction had no effect on stable isotope values of sulfur: differences between measurements 

with lipid extraction and without lipid extraction were less than 0.2‰, which is in the 

precision range of the measurements. Sampled powders were agitated with 2 ml of 

cyclohexane for 1 h and centrifuged for 10 min at 3500 tours/min. Supernatants containing 

lipids were discarded. This protocol was repeated until the supernatant were transparents. 

Samples were dried in an incubator for 48 h. Subsamples were weighted (0.3 – 0.4 mg for 
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carbon and nitrogen SIA and 1.0 - 1.3 mg for sulfur SIA) with a microbalance and packed in 

tin cups. Sulfur, carbon and nitrogen isotope ratios were determined by a continuous flow 

mass spectrometer (Thermo Scientific, Delta V Advantage) coupled to an elemental analyzer 

(Thermo Scientific, Flash EA 1112). Stable isotope values are presented in the conventional δ 

notation (in ‰) relative to IAEA-1 and IAEA-2 for δ
34

S values, Vienna Pee Dee Belemnite 

for δ
13

C values and atmospheric N2 for δ
15

N values. Isotopic measurement errors were less 

than 0.20‰ for δ
34

S, δ
13

C and δ
15

N. To ensure that the lipid extraction was effective, we 

verified that the C/N mass ratios of all the samples were below 4. 

All stable isotope statistical analyses were carried out in R 3.0.0. Mean differences 

between the three dolphin social groups and between males and females’ δ
34

S, δ
13

C and δ
15

N 

values were compared using Student t-tests or Mann–Whitney-Wilcoxon tests (depending on 

whether the data satisfied the required conditions: normality and homogeneity of variances). 

Significance levels were adjusted for multiple comparisons using the sequential Bonferonni 

method. Seasonal variations in stable isotope values were also evaluated. 

Stable isotope niches of the three social groups were estimated using multivariate, 

ellipse-based metrics: SIBER (Stable Isotope Bayesian Ellipses in R, Jackson et al. 2011) 

implemented in the SIAR package version 4.2 (Parnell & Jackson 2011). Standard ellipse is to 

bivariate data what standard deviation is to univariate data. The standard ellipse area (SEA) is 

defined by a subsample (40%) of the bivariate data (in our case, the ratios of δ
34

S and δ
13

C, 

δ
34

S and δ
15

N and δ
13

C and δ
15

N) and was calculated from the variance and covariance of the 

data. We corrected SEA for sample size (SEAc). This approach is robust when comparing 

small and unbalanced sample sizes and is not biased by outliers (Jackson et al. 2011). The 

degree of SEAc overlap between each social cluster was also estimated.  

To test for subdivision in the dataset, a clustering analysis was performed based on 

probabilistic models with no a priori using mclust package version 4.2 (Fraley & Raftery 

2002; Fraley et al. 2012). It implements a maximum-likelihood clustering approach based on 

Gaussian mixture models. Model parameters are estimated using the Expectation 

Maximization (EM) algorithm initialized by hierarchical model-based clustering. The default 

settings were used where the optimal model (out of 10 models with different covariance 

structure) and number of clusters (set from 1 to 9) were selected by BIC (Bayesian 

Information Criterion). The analysis was performed both for the whole dataset and only for 
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individuals whose social group is identified. For the latter, assignments obtained were 

compared to the social cluster assignments.  

 

f) Influence of relatedness, sex and ecology on association patterns 

To test whether genetic relatedness, maternal kinship, similar ecology, and sex were 

significant predictors of the strength of associations, a Double Dekker Semi-Partialing 

Multiple Regression Quadratic Assignment Procedure (MRQAP) was carried out using the 

sna package 2.3.1 in R 3.0.0. (Dekker et al. 2007; Butts 2013). The MRQAP is an extension 

of the Mantel test that allows a dependent matrix to be regressed simultaneously against 

multiple explanatory matrices that represent dyadic attribute relationships. Its interpretation is 

similar to multiple regression, but it takes non-independence of the pairwise data into account 

by randomly permuting the dependent matrix (see Mann et al. 2012 and Wey & Blumstein 

2010 for further details). Association indices (Half-Weight Index) were the response matrix. 

Bi-parental relatedness, maternal kinship, sex homophily and ecological similarity were the 

explanatory matrices.  

Pairwise relatedness values were estimated as described earlier using the Queller and 

Goodnight (1989) relatedness coefficient (R). All individuals were used to calculate allele 

frequencies (N = 90), and then R was calculated between individuals used in social structure 

analyses (N = 54). For the maternal kinship matrix, dyads having the same haplotypes 

received a 1 and dyads having different haplotypes a 0. Male and female homophily matrices 

were created by assigning a value of 1 if dolphins were of the same sex and 0 otherwise. For 

the ecological similarity matrix, Euclidean distances of the values of δ
34

S, δ
13

C and δ
15

N 

(distISO) between individuals (i and j) were first calculated as follows:  

𝑑𝑖𝑠𝑡𝐼𝑆𝑂 = √ (𝛿34𝑆𝑖 −  𝛿34𝑆𝑗)² + (𝛿13𝐶𝑖 − 𝛿13𝐶𝑗)² + (𝛿15𝑁𝑖 − 𝛿15𝑁𝑗)².  

Then, the similarity matrix was calculated by subtracting distISO from the maximum of 

distISO. 
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Mantel tests were conducted to evaluate the influence of each matrix on the 

association matrix using 10 000 permutations and the ade4 package 1.3.6. (Chessel et al. 

2004; Dray & Dufour 2007; Dray et al. 2007). 

All analyses were carried out for the whole dataset and for males and females 

separately. Unless otherwise notified, results were similar to the ones obtained with both 

sexes. 

We tested whether relatedness was higher within social clusters than expected at 

random using a randomization test in R.3.0.0. Mean relatedness was calculated for each social 

cluster. Individuals were randomly permuted 10 000 times between groups. The number of 

individuals was kept identical as in the observed dataset. Significance was assessed by 

comparing the distribution of permuted mean relatedness for each cluster to the observed 

mean relatedness. For mtDNA data, we tested whether individuals were more likely to share 

mitochondrial DNA haplotypes within social clusters than expected at random using a similar 

randomization test. The sum of dyads sharing haplotypes was calculated for each social 

cluster. Individuals were randomly permuted 10 000 times between groups. The number of 

individuals was kept identical as in the observed dataset. Significance was assessed by 

comparing the distribution of the permuted sums of dyads matching haplotypes for each 

cluster to the observed sum.  

 

3) Results 

a) Biopsy sampling 

Biopsy samples were obtained from 90 different individuals including 28 females and 

62 males. 54 individuals were included in social structure analyses and were composed of 39 

males and 15 females. The dataset was therefore clearly male biased. We avoided sampling 

mothers with calves and were thus less likely to sample females than males. In addition, this 

bias could also be linked to possible differential behavior reactions towards the boat between 

males and females.  
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b) Genetic population structure 

No significant departure from HWE and no null alleles were detected. Linkage 

disequilibrium was significant for 0.7% of the pairwise comparisons and was therefore 

considered negligible. The genotyping error rate was 0.0036 (i.e. 1 incorrect genotype / 275 

genotypes reprocessed). 

The most likely number of populations was one using DAPC and TESS (see DAPC 

BIC plot and TESS barplot for K=2 in respectively Appendix A4.5 and A4.6a). Identical 

results were obtained when one individual per pair of closely related individual was removed 

(i.e. 18 individuals). Although the most likely number of clusters was not straightforward 

when examining the STRUCTURE LnP(D) plot (Appendix 4.7a) for the whole dataset, the 

examination of the membership proportion plots indicated that there was only one population 

(Appendix A4.6b). Moreover, when removing one individual per pair of close relatives, both 

membership proportion and LnP(D) plots indicated that the most likely number of population 

was one (Appendix A4.6c and A4.7b). Models with uncorrelated and correlated allele 

frequencies produced similar results. 

 

Five haplotypes were identified in the dataset (GENBANK accession numbers from 

KF650783 to KF650787 for haplotypes 1 to 5, respectively). The median-joining network 

indicated that the majority of individuals shared three haplotypes that are separated by 1 bp 

(Figure 4.1b). However, two males had more distant haplotypes (separated by 11 pb from the 

main lineage). The three main haplotypes were shared by both males and females (Figure 

4.1c). We did not detect any spatial organization of the haplotypes nor major differences in 

haplotype frequencies between social clusters (Figure 4.1a and 4.1d). 
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Figure 4.1. Mitochondrial DNA results for the Normano-Breton gulf bottlenose dolphins. a) 

Map showing the haplotype of each biopsied bottlenose dolphin whether they were included 

in the social structure analyses or not (N = 90). b) Median-joining network of mitochondrial 

DNA control region haplotypes found in bottlenose dolphins from the Normano-breton gulf. 

The size of the circles is proportional to haplotype frequencies. Black squares indicate either 

extinct or unsampled intermediate haplotypes. Black dashes indicate mutation steps between 

haplotypes. c) Piecharts of haplotype frequencies for each sex. d) Piecharts of haplotype 

frequencies for each social cluster (N = 54). 

 

c) Ecological population structure   

δ
34

S values were significantly different between Minquiers and South, and between 

Minquiers and North social clusters (P < 0.01, Table 4.1, see Figure 4.1 for area locations and 

Chapter 3 for social cluster details). For δ
13

C and δ
15

N, differences were only significant 

between Minquiers and North clusters (P = 0.01 and P < 0.01 respectively). 
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Table 4.1. Stable isotope values (mean +/- SD) for each social cluster (‰). 

Social cluster N  δ
13

C   δ
34

S   δ
15

N   

South 8 -17.2 ± 0.4 14.9 ± 1.0 14.9 ± 0.4 

Minquiers 27 -17.3 ± 0.4 16.0 ± 0.4 14.6 ± 0.5 

North 19 -16.9 ± 0.4 15.5 ± 0.6  15.2 ± 0.3 

 

There were no significant differences between males or females in stable isotope 

values or major seasonal trends (see Appendix A4.8a to A4.8c for variations in stable isotope 

values according to season). 

SEAc for δ
13

C and δ
15

N, and δ
34

S and δ
13

C overlapped between all social clusters 

(Table 4.2, Appendix A4.9a and A4.9b). SEAc for δ
34

S and δ
15

N showed little spatial overlap 

(Figure 4.2, Table 4.2). Given the above results, we considered only δ
34

S and δ
15

N values for 

the estimation of the most likely number of clusters with no a priori. The estimated number of 

clusters was 3 with 70% of the individuals assigned to the same stable isotope group as their 

social group. It should be noted that the sample size for the South cluster (N = 8) was 

relatively limited. 

 

Table 4.2. Areas of overlap between SEAc of different social cluster pairs (‰²). 

Pair of SEAc δ
13

C and δ
34

S   δ
34

S and δ
15

N  δ
15

N and δ
13

C 

South and Minquiers 0.08 0.04 0.29 

South and North 0.40 0.01 0.09 

North and Minquiers 0.07 0.09 0.11 
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Figure 4.2. δ
34

S and δ
15

N signatures for each social group of bottlenose dolphins. Solid lines 

indicate Standard Ellipses Areas corrected for small sample sizes (SEAc). Area values are 

given in the legend (‰²). 

 

d) Influence of relatedness, sex and ecology on association patterns 

Ecological similarity and maternal kinship were the only significant predictors of 

association strengths both when conducting MRQAP (Table 4.3) and Mantel tests. Only 5% 

of the variance in HWI was explained by these two variables in the MRQAP analysis. The 

effect of ecological similarity was positive while the effect of maternal kinship was negative.  

 

Table 4.3. Results from the MRQAP analysis. Significant P-values (P < 0.05) are indicated in 

bold. 

Variable Unstandardized coefficient P-value 

Ecological similariy 0.05 0.00 

Biparental relatedness 0.03 0.21 

Maternal kinship -0.03 0.01 

Female homophily 0.03 0.10 

Male homophily -0.00 0.69 
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When removing maternal kinship, the variance explained did not change substantially 

(0.7%), indicating that this variable had little influence on HWI. This was confirmed using a 

Mantel test for which the observed correlation was r = - 0.07 between maternal kinship and 

HWI matrices (P = 0.01). In contrast, the observed correlation was r = 0.19 between 

ecological similarity and HWI matrices (P < 0.01, Figure 4.3). Strongly associated individuals 

had similar ecology while weakly or never associated individuals may have similar or 

contrasted ecology (Figure 4.3). Sex and bi-parental relatedness had no influence on HWI 

(Table 4.3, Mantel tests P = 0.45 and P = 0.09 respectively, Figure 4.4). There were strong 

associations both between males (number N of pairs showing a HWI ≥ 0.5 = 24), females (N 

= 7) and between males and females (N = 25), although it should be noted that a limited 

number of females were sampled. In these strong association pairs, we found only one pair of 

first-order relatives (R > 0.45) between two males.  

 

 

 

 

 

 

 

 

 

Figure 4.3. Relationship between ecological similarity and association index for each pair of 

bottlenose dolphins in the Normano-Breton Gulf, English Channel (N = 54 individuals; 1431 

pairs). 
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Figure 4.4. Relationship between biparental relatedness and association index for each pair of 

bottlenose dolphins in the Normano-Breton Gulf, English Channel (N = 54 individuals; 1431 

pairs). 

 

Permutation tests indicated that mean relatedness observed within social clusters was 

not higher than expected at random (Table 4.4). In addition, individuals were not more likely 

to share haplotypes within each social cluster than expected at random (Table 4.5). 

 

Table 4.4. Results of the permutation test to evaluate whether the mean observed relatedness 

(R observed) within each social cluster is higher than the mean relatedness generated using 

permutations (R random) for each social cluster. There are no significant P-values after 

Bonferroni correction (significant values at the 5% threshold are those for which P < 0.017). 

Social cluster R observed R random P-value 

Minquiers 0.023 -0.001 0.05 

South 0.039 -0.000 0.17 

North -0.016 -0.001 0.78 
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Table 4.5. Results of the permutation test to evaluate whether the observed sum of dyads 

matching haplotypes within each social cluster (S observed) is higher than the sums of dyads 

matching haplotypes in randomly generated data (S random).  

Social cluster S observed S random P-value 

Minquiers 142 155 0.70 

South 16 13 0.10 

North 71 77 0.61 

 

 

4) Discussion 

a) Three social and ecological clusters but a single population 

We showed in the previous chapter that bottlenose dolphins in the Normano-Breton 

gulf were divided in three social clusters. Here, we found good consistency between social 

structure and stable isotope clustering analyses. The three social clusters were ecologically 

distinct and sulfur stable isotopes were particularly efficient at detecting differences among 

groups. We previously suggested that the three social clusters were spatially segregated 

despite some overlap (Chapter 3). Here, δ
34

S results were consistent with the main sighting 

areas of the individuals (see Chapter 3 for details). δ
34

S values are increasing from terrestrial 

habitats (2 to 6‰) to marine habitats (21‰, Peterson & Fry 1987). Individuals of the 

Minquiers social cluster, which is the farthest area from shore where we observed dolphins, 

showed higher values of δ
34

S than the dolphins from the North and South clusters. In contrast, 

individuals of the South cluster, mainly sighted in and near the Bay of Mont Saint Michel (an 

estuary), had the lowest δ
34

S values. This study highlighted the power of δ
34

S, in addition to 

δ
13

C and δ
15

N, to investigate population structure and ecology of marine top predators as it 

was shown for yellow-eyed gulls (Moreno et al. 2010) and bottlenose dolphins in Florida 

(Barros et al. 2010; Olin et al. 2012).  
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In contrast, there was no genetic structure, which is not surprising given the high 

mobility of the species and the small size of the surveyed area. However, fine-scale genetic 

structure has been observed in bottlenose dolphins or other delphinids in areas of similar size 

to the Normano-Breton Gulf (around or less than 100 km), possibly as a result of social 

structure and ecology (e.g. Wiszniewski et al. 2010a; Hollatz et al. 2011; Ansmann et al. 

2012b). In the Normano-Breton Gulf, social clusters are not discrete, i.e. all individuals are 

indirectly connected to each other (Chapter 3). This inter-connected social network together 

with the small size of the area, the continuous environment (in contrast to separate bays) 

could explain the absence of genetic structure. Another hypothesis could be that if there is any 

genetic structure, it could be too recent to be detected with the set of markers used in this 

study. Indeed, the different approaches used provide information about population processes 

at different time scales. Molecular markers informed us on evolutionary time scales, with 

microsatellites integrating more recent events (a few generations) than mitochondrial 

sequences. Social structure analyses resulted from photo-identification data collected between 

2006 and 2010. Skin stable isotope values should be representative of the diet of at least two 

months considering a turn-over of 73 days for bottlenose dolphin skin (Hicks et al. 1985). 

However, a recent study using experiments on captive individuals found a retention time of 20 

to 32 days for δ
13

C and δ
15

N in skin (Browning et al. 2014). Biopsy sampling only partially 

overlapped in time with the photo-identification data. Nonetheless, stable isotope clustering 

results that are representative of the diet of individuals over the past few weeks were 

consistent with social structure results collected over several years.  

 

b) Ecology but not kinship influences social structure 

Kin selection theory predicts that associating with kin can provide indirect fitness 

benefits and higher survival, reproductive output and food intake (Hamilton 1964; Alexander 

1974; Silk 2007; Frère et al. 2010a). Here, we did not find any influence of relatedness on 

social structure, which was thought to be the norm for at least some female associations in 

inshore bottlenose dolphin societies (Frère et al. 2010b; Wiszniewski et al. 2010b) and in 

most fission-fusion species such as giraffes (Carter et al. 2013), spotted hyenas (Holekamp et 

al. 1997) and elephants (Archie et al. 2006). However, we had a limited sample size of 

females. Males did not associate preferentially with kin either. In inshore-water populations of 



Chapter 4 – Socio-genetics and ecology 

 

 

99 

 

Australia and the North-West Atlantic (Sarasota Bay, Florida), males formed various types of 

alliances to compete for females (Owen et al. 2002; Connor et al. 2011). These alliances can 

occur between related or unrelated individuals, even within a single population, sometimes 

along with more solitary individuals (Krützen et al. 2003; Owen 2003; Wiszniewski et al. 

2012a). We do not have behavioral data to support the existence of male alliances in our 

studied population. Group sizes were larger than in the populations of Australia and Florida, 

making it difficult to follow the behavior of specific individuals (Chapter 3, Wells et al. 1987; 

Wiszniewski et al. 2009). No male alliances were recorded in other populations of the NEA, 

i.e. in the Moray Firth (Scotland, Wilson 1995) and the Sado estuary (Portugal, Augusto et al. 

2011). In contrast to some populations, there was no segregation by sex, which may indicate 

lower female harassment by males (Fury et al. 2013).  

Strongly associated individuals had similar ecology while individuals that never 

associated could present either dissimilar or similar ecology. Indeed, for individuals that never 

associated, similar isotopic signatures could be obtained because of the consumption of the 

same prey in the same habitat, or different prey in distinct habitats having similar baseline 

stable isotope values. They could have dissimilar stable isotope signatures as a result of the 

consumption of different prey in the same habitat, or the same or different prey in contrasting 

habitats. Further work investigating stable isotope values in potential prey of bottlenose 

dolphins is needed to better understand their ecology. Cooperative hunting has been observed 

in several populations (Gazda et al. 2005; Torres & Read 2009; Daura-Jorge et al. 2012), 

however we do not know which feeding techniques are used in Normandy. Large group sizes 

and the turbidity of the waters make it impossible to observe underwater behavior. Individuals 

sharing feeding strategies preferentially associate in other populations, e.g. individuals using 

sponges (Mann et al. 2012) and interacting or cooperating with fisheries (Ansmann et al. 

2012a; Daura-Jorge et al. 2012; Pace et al. 2012). Given the stable isotope results, a shared 

feeding ecology is likely a factor that led to preferential associations between individuals in 

the English Channel. As kinship does not drive associations, spending time with unrelated 

individuals might provide mutual benefits when foraging (Clutton-Brock 2009). It is however 

difficult to disentangle if dolphins associate because of similar foraging behavior, or if they 

show similar ecology as a result of transmission and learning from their associates (Daura-

Jorge et al. 2012; Cantor & Whitehead 2013). Deviance explained by ecological similarity is 

low (approximately 5%). When provided, deviance values obtained in other studies ranged 
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from 17% to 31% (Mann et al. 2012; Carter et al. 2013). As statistical methods are not yet 

available for matrix data to enable the interaction of variables to be tested, the deviance 

explained by MRQAP is usually smaller than in standard linear regression. In addition, as 

individuals were sampled over two years, seasonal variations in stable isotope values, 

although minimal, could reduce the correlation between ecological homophily and association 

strength.  

Other factors are likely to contribute to bottlenose dolphin social structure. Shared 

reproductive state could influence female associations (Möller & Harcourt 2008). Age, 

although difficult to monitor in dolphins, was a good predictor of associations in several 

fission-fusion species (Wey & Blumstein 2010; Hauver et al. 2013). Previous familiarity, in 

particular during the first years of life (Connor et al. 2000; Stanton et al. 2011) could 

influence associations in adulthood. For instance, dolphins are capable of long-term memory 

and individual recognition through individually specific vocal labelling (Bruck 2013; King & 

Janik 2013). Moreover, associating with familiar individuals was shown to confer fitness 

benefits (e.g. in fish and birds, Griffiths et al. 2004; Grabowska-Zhang et al. 2012). 

Personalities could also affect animal affiliative behavior (e.g. Croft et al. 2009; Aplin et al. 

2013). Finally, predation is another major force that can influence social structure (see review 

in Krause & Ruxton 2002). In the Normano-Breton gulf, killer whales and shark species are 

not observed and no shark bites were ever recorded, which contrasted with Australian and 

North-West Atlantic inshore populations (Wells et al. 1987; Heithaus 2001). This lack of 

predation could have important evolutionary impact and might contribute to the absence of 

effect of relatedness on female social structure.  

Non-social factors, such as habitat use, are increasingly included in social structure 

analyses to tease apart preferential associations and relationships resulting only from shared 

use of space (Frère et al. 2010b; Cantor et al. 2012; Carter et al. 2013). As this study included 

dolphins sighted in only at least five occasions, home ranges could not be included in the 

regression analysis. However, as dolphins are highly mobile, associations may reflect social 

preferences, at least to some degree, even in the case of overlapping ranges. In addition, 

shared use of space can be an indirect social factor by creating an opportunity for individuals 

to interact. 
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c) Influence of phylogeography on social structure 

For some species, social structure can be strongly constrained by phylogenetics rather 

than being influenced by ecological selection (Di Fiore & Rendall 1994; Chapman & 

Rothman 2009). Coastal bottlenose dolphins in the North-East Atlantic (NEA) are genetically 

closer to the pelagic bottlenose dolphins of both the NEA and North-West Atlantic (NWA) 

than to coastal bottlenose dolphins in the NWA (Chapter 5). Moreover, recent genetic studies 

using mitochondrial DNA suggested that coastal populations were founded by the pelagic 

population more recently in the NEA than in the NWA (Chapter 5, Moura et al. 2013). 

Environment type is thought to have an influence on delphinids social structure. In a review 

of delphinids social structure, Möller (2011) predicted that females in inshore environments 

(estuaries or bays) will have associations of moderate strength with both kin and non kin 

although they will preferentially share stable associations with related females. In coastal 

open shorelines and pelagic environments, female associations should mainly be weak and not 

influenced by kinship. However, if resources are limited or the population is geographically 

isolated, associations might be moderate or strong (Möller 2011). Knowledge on pelagic 

bottlenose dolphin social structure is very limited. However, photo-identification studies 

showed low re-sighting rates of pelagic individuals around the Azores (Silva et al. 2008) and 

telemetry indicated long-distance movements in the NWA (Wells et al. 1999). In addition, 

other small pelagic delphinids have usually weak social structures that are not influenced by 

kinship (see review in Möller 2011). Coastal bottlenose dolphins in the English Channel 

might therefore have a social structure derived from pelagic Atlantic bottlenose dolphins 

rather than similar to the ones of inshore bottlenose dolphins in the NWA and Australia. In 

contrast to what is known for pelagic bottlenose dolphins (Silva et al. 2008), individuals are 

resident year-round in coastal waters of the English Channel (Chapter 3, stable isotope results 

of this chapter). Resource availability is a major factor driving marine top predator 

distribution and movements (Boyd et al. 1994; Fauchald & Erikstad 2002). For instance, for 

coastal bottlenose dolphins in California, the absence of evidence of site fidelity may be 

linked to the unpredictable and patchy distribution of prey (Defran & Weller 1999; Defran et 

al. 1999) and similar conclusions were drawn for transient pelagic bottlenose dolphins around 

the Azores (Silva et al. 2008). Ecological conditions might therefore be suitable to host a 

large population of dolphins in the English Channel. In addition, large group sizes might be 
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explained by prey predictability and availability (Chapter 3) but also phylogenetic constraints 

as pelagic groups are generally larger than coastal ones (Connor et al. 2000; Silva 2007). 

 

d) Drivers of social structure and interest of combining approaches 

The results show that ecology, individual foraging behavior and population structure 

history may have an influence on the social structure of coastal bottlenose dolphins. The 

absence of predation, resource availability and a recent founder event from the pelagic 

population probably played a role in shaping social structure characteristics specific to this 

population, i.e. large group sizes for resident coastal individuals and the absence of influence 

of relatedness. Suitable ecological conditions probably led to the residency of the individuals. 

This study highlights the importance to include phylogeography to better understand social 

organization, which is often ignored in cetacean studies (apart from a few studies such as the 

one of Beck et al. 2012). Similarly, killer whale social structure in the NEA is likely shaped 

by ecological conditions but phylogenetic inertia might also partially play a role (Beck et al. 

2012). This work contributes to a growing number of studies showing that bottlenose dolphin 

societies, known to be fission-fusion, are highly variable within this form of social structure 

(Lusseau 2003; Wiszniewski et al. 2010b; Connor et al. 2011; Ansmann et al. 2012a; Daura-

Jorge et al. 2012; Wiszniewski et al. 2012a). This might be explained by the wide range and 

contrasted type of habitats where the species occurs where ecological forces driving social 

structure can differ. The combination of approaches enabled us to get a better understanding 

of the structure of the population. A single genetic population was identified, whilst social 

structure and stable isotope analyses indicated three clusters. These results underlined the 

necessity to combine tools to assess fine-scale population structure, which is particularly 

important for conservation. We also showed that stable isotopes are useful to evaluate the 

influence of ecology on social structure and are particularly relevant in areas where foraging 

behavior of bottlenose dolphins cannot be monitored visually. This approach could be used 

for a wide range of cryptic or difficult to observe taxa. Further work, on stable isotopes in 

potential prey species could help to better understand foraging specializations within the 

population.  
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1) Introduction 

 

Despite no obvious physical barrier to gene flow and high movement capacities, 

intraspecific population differentiation in vertebrates can be high at large and small spatial 

scales (e.g. Natoli et al. 2004; Hoffman et al. 2005; Sacks et al. 2005). Environmental factors, 

in particular habitat characteristics and past climate changes, have been correlated with 

population divergence in fishes and mammals (e.g. Bernatchez 1997; Gaggiotti et al. 2009; 

Amaral et al. 2012b). The degree of connectivity between populations can also be influenced 

by an interaction between ecological conditions and behavioral traits. In fishes, natal homing 

(i.e. site fidelity to natal breeding ground) is suggested as an important factor shaping genetic 

differentiation among populations through local adaptation to a particular habitat that confers 

better fitness (e.g. Kawecki & Ebert 2004; Dionne et al. 2008). Similarly, despite high 

mobility, terrestrial carnivores (e.g. wolves and coyotes) can show cryptic population 

structure linked to individual preferential dispersal towards similar natal area habitats where 

they will find familiar prey resources (Sacks et al. 2005; Pilot et al. 2012). Resource 

specializations may also explain genetic differentiation of killer whales in the Pacific between 

sympatric fish and marine mammal eating ecotypes (Hoelzel et al. 1998a), and in the North-

East Atlantic (NEA) among different fish eating populations (Foote et al. 2011). Social 

cohesion and learning of foraging techniques within the matrilineal pod is likely to promote 

philopatry (Hoelzel et al. 1998a).  

 Niche specializations between genetically different groups of individuals can result in 

the classification of ecotypes. The term “ecotype” was first defined in plants following 

common garden experiments (Turesson 1922a, b) and corresponded to ecological units that 

arise from genotypical responses to particular habitats. Groups of individuals in distinct 

environments can become differentiated, resulting in different ecotypes, if heritable variation 

is sufficient for natural selection to take place and if local adaptation is stronger than gene 

flow between groups (Begon et al. 2006). Since its first appearance, the definition of an 

ecotype has been controversial (see review in Lowry 2012). We used Lowry’s (2012) ecotype 

definition in this study, i.e. groups of populations, which differ across the landscape by 
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genetics (e.g. allele frequencies differences) and ecological and/or physiological traits. 

Ecotype differentiation can be confirmed using common garden experiments for small 

animals like Dominican anoles (Thorpe et al. 2005). However, for large, highly-mobile 

mammals, these experiments would be impractical and ethically controversial. Molecular, 

ecological, distribution and behavioral studies are therefore needed. Killer whales in the 

North-East Pacific were classified in three ecotypes (resident, transient and offshore) from an 

in-depth knowledge of foraging behavior, genetics, ranging patterns and morphology (see 

review in de Bruyn et al. 2013). Coastal and pelagic bottlenose dolphin, Tursiops truncatus, 

ecotypes were distinguished through genetics, distribution, diet, and skull morphology in the 

North-West Atlantic (NWA) (Mead & Potter 1995; Hoelzel et al. 1998b) and in the Pacific 

(Walker 1981; Curry & Smith 1998; Perrin et al. 2011). The two bottlenose dolphin ecotypes 

form separate mitochondrial lineages in the NWA, with less genetic diversity in coastal 

populations. The situation is more complex in the Pacific Ocean and the North-East Atlantic 

(NEA) (Natoli et al. 2004; Tezanos-Pinto et al. 2009). In the Pacific, mitochondrial DNA 

(mtDNA) genetic differentiation between coastal and pelagic bottlenose dolphins is 

significant but there is no complete lineage sorting* (Segura et al. 2006). Tezanos-Pinto et al. 

(2009) suggested that ecotype differentiation in the NWA may not be representative of 

genetic structuring of bottlenose dolphins worldwide.  

In the NEA, bottlenose dolphins are found in coastal waters where they form either 

discrete small resident groups of tens to hundreds of individuals (e.g. Berrow et al. 2012; 

Cheney et al. 2012) or more mobile groups (O’Brien et al. 2009). They are transient and/or 

resident in deep waters near offshore islands (Silva et al. 2008), the Gibraltar Strait (de 

Stephanis et al. 2008a) and pelagic waters in particular the shelf edge of the Bay of 

Biscay and Celtic Sea with abundance estimates of thousands of individuals (Hammond et al. 

2009; Hammond et al. 2013). In the Mediterranean Sea, resident populations and mobile 

individuals were also reported (e.g. Gnone et al. 2011). There is a distributional hiatus in the 

NEA, i.e. resident coastal populations are mainly observed in shallow waters less than 40 m 

deep, while the sightings of large-scale surveys are mainly concentrated on the outer shelf, the 

shelf-edge (depths from 200 to 4000 m) and oceanic waters. There are also occasional 

sightings on the rest of the shelf (Certain et al. 2008, SAMM aerial campaigns 2011/2012, E. 

Pettex, pers. comm.; Hammond et al. 2013). Given this shallow coastal vs. deep pelagic 

habitat distribution, the existence of two distinct ecotypes could be possible. However, no 
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previous study attempted to delineate ecotypes in the NEA. Fine-scale genetic structure was 

reported locally in Ireland and the Iberian Peninsula where a potential differentiation between 

pelagic and coastal dolphins was suggested (Fernandez et al. 2011b; Mirimin et al. 2011). In 

contrast, despite high geographical distance, no differentiation was found between individuals 

sampled around the pelagic islands of Madeira and the Azores using a relatively small set of 

10 microsatellites markers (Quérouil et al. 2007). The only large-scale genetic study (Natoli et 

al. 2005) correlated genetic breaks to oceanographic boundaries between Scotland and the 

NEA (using samples from South England to Gibraltar for the latter) and between West and 

East Mediterranean Sea. However, despite samples coming from Scotland to the Black Sea, 

this study was limited by small sample sizes (e.g. 35 samples for the NEA) and the relatively 

low number of microsatellites used (9). Our understanding of the bottlenose dolphin 

population structure is therefore extremely fragmented in the NEA. Determining population 

structure and delineating eventual bottlenose dolphin ecotypes in the NEA is essential for 

management as anthropogenic pressures can be extremely different in coastal and pelagic 

environments. The small size of resident coastal populations and the extinction of at least one 

genetically isolated population in an estuary (Humber Estuary, England) that has not been 

repopulated raised conservation concerns for the species in coastal waters (Nichols et al. 

2007). Moreover, bottlenose dolphins are protected in Europe under the Habitats Directive 

where they are listed as a species whose conservation requires the designation of Special 

Areas of Conservation. 

In this context, the aim of our study was to determine the population structure of 

bottlenose dolphins in the NEA. Thanks to a collaborative framework of organizations across 

Europe, we were able to gather a large sample size (i.e. 405 tissue samples) covering an 

unprecedentedly wide geographical area encompassing both coastal and pelagic waters. We 

used a combination of biopsy samples and samples from stranded animals and interpretation 

of data from strandings was enhanced by estimating, whenever possible, the most likely area 

of death of stranded individuals using a drift prediction model (Peltier et al. 2012). The most 

likely area of death is indeed more indicative of the individual living area than stranding 

location and the model is a promising and novel approach to improve the reliability of using 

stranded animals in genetic studies of marine megafauna. We also used a much larger set of 

independent loci (25 microsatellites and a 682 bp fragment of the mitochondrial control 

region) than previous studies. In addition, we worked with several clustering methods, which 
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is rarely done in marine mammal population structure studies. The identified populations were 

characterized in terms of genetic diversity, connectivity and effective population sizes. We 

placed our work in the broader phylogeographical context of the North Atlantic basin, which 

raised new hypotheses about the evolutionary history of bottlenose dolphins in this area. 

Finally, we discussed ecotype delineation, evolutionary scenarios, and ecological and 

behavioral processes driving the population structure of this highly mobile top predator. 

 

2) Material and methods 

a) Sample collection, DNA extraction and sexing 

A total of 405 bottlenose dolphin samples were obtained from the NEA and the 

Mediterranean Sea (see study area in Figure 5.1). Samples were collected from free-ranging 

dolphins by skin biopsy sampling between 2003 and 2012 (N = 164 including the samples of 

the previous chapter) and from skin, muscle or kidney of stranded animals between 1990 and 

2012 (N = 241). Tissue samples were either frozen or preserved in ethanol or DMSO. DNA 

was extracted using NucleoSpin Tissue kits (Macherey-Nagel) following the manufacturer’s 

protocol. 

 

Figure 5.1. Map of the study area. -1000 and -200 m isobaths are plotted. 



Chapter 5 – Bottlenose dolphin population structure 

 

 

109 

 

 After checking for mitochondrial DNA (mtDNA) sequence quality and duplicates (i.e. 

individuals that were biopsy-sampled more than once), 381 samples (Figure 5.2) were kept in 

the analyses. 343 individuals had both mitochondrial and microsatellite data, 26 only 

mitochondrial data and 12 only microsatellites resulting in N = 355 for microsatellite and N = 

369 for mitochondrial data analyses. Samples for which either mitochondrial or microsatellite 

data were missing came only from stranded individuals and the failure to obtain either 

mitochondrial or nuclear data is likely linked to decomposition state. Geographic origin was 

known for 173 samples (biopsy samples: N = 158; stranded animals that were previously 

photo-identified: N = 15), while 208 samples came from stranded animals of unknown origin. 

A drift prediction model which takes into account meteorological conditions (currents, winds 

and tides), the decomposition state of the carcasses and cetacean body parameters (thickness 

and floatability) was applied to stranded animals in the Bay of Biscay, English Channel and 

North Sea (the areas encompassed by the model), in order to estimate their most likely area of 

death (Appendix A5.1, Peltier et al. 2012). This could only be estimated when the 

decomposition state of the carcass was available (N = 66). The decomposition state is a proxy 

of the time after death in terms of intervals of days (Peltier et al. 2012). To estimate the most 

likely area of death, the centroid position of all the drift gps coordinates during the 

appropriate day interval was calculated for each individual using the geosphere package 

(Hijmans et al. 2012) in R 3.0.0. (R Core Team 2013). All maps were created using the 

marmap package (Pante & Simon-Bouhet 2013). 
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Figure 5.2. Sampling locations for individuals of known origin (biopsy samples and stranded 

individuals previously photo-identified), stranded animals (and their stranding locations) and 

areas of death (stranded animals for which it was possible to apply the drift prediction model). 

-1000 and -200 m isobaths are plotted. 

 

The gender of the individuals was determined by amplification of the SRY plus 

ZFX/ZFY fragments as described in Rosel (2003) and/or visually during necropsy. 

 

b) Microsatellite genotyping and validity 

Samples were genotyped at the same 25 microsatellite loci as in Chapter 4 (see 

Chapter 2.1.d for general information on microsatellite markers, and Appendix A4.1 of the 

Chapter 4 for PCR, genotyping conditions and the characteristics of the microsatellite loci). 

To assess genotyping error rate, 28 individuals were randomly selected for re-amplification 

and scoring at all loci. 13 duplicates were also included in error rate calculation. 11.55% of 

the dataset was therefore reprocessed. Individuals were kept in the analyses when at least 12 

loci were successfully amplified (N = 355) resulting in 1.84% of missing values in the whole 
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dataset. Each microsatellite locus was checked for null alleles and scoring errors using 

Microchecker 2.2.3 (Van Oosterhout et al. 2004). Departures from Hardy-Weinberg 

equilibrium (HWE) and linkage equilibrium were tested using 10 000 iterations in GENEPOP 

web version 4.2 (Raymond & Rousset 1995). Tests were conducted for the whole dataset and 

for each population identified by the clustering methods. Significance levels were corrected 

for multiple comparisons using the sequential Bonferroni technique for this test and for all 

multiple comparisons of the study (Holm 1979). 

 

c) Mitochondrial DNA sequencing 

A 682 base-pair (bp) portion of the mitochondrial control region was amplified using 

primers Dlp1.5 (5’-TCACCCAAAGCTGRARTTCTA-3’) (Baker et al. 1998) and Dlp8G (5’-

GGAGTACTATGTCCTGTAACCA-3’) (as reported in Dalebout et al. 2005). PCR 

conditions are given in Appendix A4.4 of the previous chapter and the general characteristics 

of mitochondrial markers are described in Chapter 2.1.d. Consensus sequences were 

generated and checked for ambiguities with Sequencher 5.0 Demo (Gene Codes Corporation) 

and manually edited with BioEdit (Hall 1999). Unique haplotypes were identified using 

DNAsp (Rozas & Rozas 1999). 

 

d) Population structure 

We used three clustering methods to determine the most likely number of populations 

and assign individuals to these: a multivariate method, the Discriminant Analysis of Principal 

Components (DAPC) (Jombart et al. 2010), and two Bayesian methods implemented in 

STRUCTURE (Pritchard et al. 2000) and TESS (Durand et al. 2009b). We used these 

different approaches to ensure that our results were reliable (Guillot et al. 2009). These 

methods are summarized in Chapter 4.2.d and detailed in Chapter 2.2.b. Parameter values and 

steps are given here again as there are slight changes.  

DAPC, which is efficient at detecting hierarchical structure, was performed using the 

package adegenet (Jombart 2008) in R 3.0.0 (see Chapter 4.2.d for details). Membership 
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probabilities were calculated for each individual and each individual was assigned to a cluster 

using its maximum membership probability. 

In STRUCTURE, the admixture models with correlated and uncorrelated allele 

frequencies were used, without indicating any a priori information on the origin of the 

samples. Ten independent runs for K values set from 1 to 10 were performed using a burnin-

period of 50 000 iterations followed by 300 000 Markov Chain Monte Carlo (MCMC) steps. 

The most likely number of clusters was chosen by calculating ΔK (Evanno et al. 2005), which 

is the second order rate of change of the mean loglikelihood of the data (LnP(D)) between 

successive K values in STRUCTURE Harvester v.0.5 (Earl & Vonholdt 2012). As this 

method cannot identify K = 1, we confirmed the results by plotting LnP(D) (Pritchard et al. 

2000), examining individual membership proportion plots and consistency across runs. The 

Evanno method can reveal hierarchical structure by detecting the upper level of genetic 

differentiation (Evanno et al. 2005), therefore STRUCTURE was re-run in each of the 

identified clusters. When K was defined, the run with the highest LnP(D) value was selected 

and individuals were assigned to clusters based on maximum membership proportions
3
.  

The conditional auto-regressive (CAR) admixture model was run in TESS using a 

burnin of 20 000 steps followed by 120 000 MCMC steps. The number of clusters (K) to test 

was set from 2 to 10, with 10 replicate runs for each K. The spatial interaction parameter was 

set to 0.6 and the degree of trend to linear (which are the default parameters). To exclude land 

masses from the analysis, 9 dummy points were added along French and Spanish coasts 

(Durand et al. 2009a). The most likely number of clusters was selected by plotting Deviance 

Information Criterion (DIC) values against K and by examining plots of individual 

membership proportions. Consistency of the runs was checked. When K was defined, the run 

with the lowest DIC was used and individuals were assigned to clusters based on maximum 

membership proportions. 

As results were highly consistent between analyses in terms of the most likely number 

of clusters and individual assignments (which were identical for 93.53% of individuals across 

the three methods), the method that uses both multi-locus genetic data and spatial coordinates 

                                                 
3
 We use “membership proportions” to refer to the percentages of the genome of an individual that 

come from each population (i.e. admixture proportions, see Chapter 2.2.b for details). For vocabulary 

simplification, we will use individual assignment to populations when referring to the clustering results instead 

of the assignment of individual’s genomes.  
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(i.e. TESS) was used to divide the dataset into populations for the following analyses (see 

description of the populations in the population structure result section).  

As the inclusion of closely related individuals could impact population structure 

analyses, the Queller & Goodnight (Queller & Goodnight 1989) relatedness coefficient (R) 

was calculated using KINGROUP v.2 (Konovalov et al. 2004) within each population 

identified by TESS. TESS was then re-run by removing one individual from each pair of 

individuals showing a relatedness coefficient superior or equal to 0.45 as in Rosel et al. 

(2009).  

Sex-biased dispersal was tested in FSTAT 2.9.3 by comparing sex-specific assignment 

indices, relatedness, FST and FIS values using 10 000 permutations (Goudet et al. 2002). The 

test was performed on the whole dataset using the populations identified by TESS and at the 

different levels of the hierarchical structure. Only adults were included in the test (biopsy 

samples were only collected from adults, and for stranded animals, we kept only individuals 

with a minimum total length of 250 cm, i.e. an arbitrary threshold for which we considered 

that individuals were physically mature, N = 292 individuals).  

 

e) Nuclear genetic differentiation and diversity 

To characterize the level of genetic differentiation among the clusters identified by 

TESS, pairwise FST were estimated between populations using Arlequin 3.5.1.3 (Michalakis 

& Excoffier 1996). The level of significance was assessed using 10 000 permutations. The 

analyses were also performed with the dataset excluding closely related individuals. For each 

identified population, mean number of alleles (NA) and allelic richness* (AR) were calculated 

in FSTAT (Goudet 1995). Inbreeding coefficient (FIS), observed heterozygosity (Ho) and 

expected heterozygosity (He) were calculated in Arlequin. Convert (Glaubitz 2004) was used 

to identify private alleles*. Diversity indices were also calculated per locus. Mean AR and Ho 

were compared between pairs of populations using a Wilcoxon paired-sample test. 
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f) Mitochondrial DNA differentiation and diversity 

A haplotype network was constructed to determine genealogical relationships using 

median-joining and maximum-parsimony algorithms implemented in Network 4.6.0.0 

(Bandelt et al. 1999). Sequences were clustered according to the populations identified by 

TESS. Number of haplotypes (NH), number of polymorphic sites (S), haplotypic diversity* 

(h) and nucleotide diversity* (π) were determined for each population in Arlequin. jModeltest 

2.1.3 was used to determine the most accurate model of substitution using the Bayesian 

Information Criterion (BIC, Guindon & Gascuel 2003). Pairwise genetic differentiation was 

estimated between populations in Arlequin using FST and ФST. For ФST, the Tamura and Nei 

(1993) model of substitution was chosen as it is the closest model to the HKY + I model, 

selected by jModeltest. Significance levels were tested using 10 000 permutations. 

Sequences from this study were placed in the phylogeographical context of the North 

Atlantic basin. Haplotypes from the NWA, and additional sequences from the Azores and 

Madeira were obtained from GENBANK (Appendix A5.2). A haplotype network was 

constructed as described above using a 324 bp consensus length for unique haplotypes.  

 

g) Recent migration rates 

Recent and asymmetric migration rates (within the last few generations) among 

populations identified by TESS were estimated using the Bayesian method implemented in 

BayesAss (Wilson & Rannala 2003) on microsatellite data (see Appendix A5.3 for the 

settings).  

 

h) Effective population sizes 

We used two methods for estimating contemporary effective population sizes (Ne) for 

each population identified by TESS: a method that uses linkage disequilibrium in LDNe 

(Waples & Do 2008) and an Approximate Bayesian Computation method implemented in 

ONeSAMP (Tallmon et al. 2008). In LDNe, alleles frequencies less than 0.02 (Pcrit) were 

excluded from the analyses to avoid bias caused by rare alleles but still get a high precision 
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(Waples & Do 2010). In ONeSAMP, Ne priors were set from 2 to 500 and from 2 to 10 000 

for the expected small and large populations, respectively. Influences of priors on the 

estimates were tested for the two coastal populations, using priors from 4 to 1000 and from 2 

to 200. Our dataset included multiple cohorts and age classes, which will bias Ne estimates 

downwards. For instance, a 10-15% downward bias in Ne estimates was observed in a study 

using mature bottlenose dolphins and a Pcrit of 0.02 in LDNe (Robin Waples, personal 

communication). We therefore applied a bias correction of 15% to our results for both LDNe 

and ONeSAMP (Nec). 

 

3) Results 

a) Microsatellite validity 

The genotyping error rate was 0.0097 (i.e. 10 incorrect genotypes / 1025 genotypes 

reprocessed). The error rate for stranded individuals, which were fresh to moderately 

decomposed (0.013, i.e. 7 incorrect genotypes / 525 genotypes reprocessed), was twice as 

large as the error rate for live individuals (0.006, i.e. 3 incorrect genotypes / 500 genotypes 

reprocessed). Significant departure from HWE was detected for the majority of the loci when 

considering the whole dataset as a single population. However, this was the result of Wahlund 

effects* as no significant departure was found when dividing the dataset into the populations 

identified by TESS, except for loci MK9 and EV37 in one population each (Appendix A5.4). 

As deviation was significant in only one population and results with and without these two 

loci were essentially the same (number of clusters and individual assignments), only results 

including MK9 and EV37 are reported. Linkage disequilibrium was significant for 0.50% of 

the pairwise comparisons and when significant, it was not detected across all populations, and 

was therefore considered negligible. 
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b) Drift prediction model 

The drift prediction model indicated that individuals were likely to have died in 

coastal waters in the North-Sea and the English Channel and from coastal to the outer shelf-

edge waters in the Bay of Biscay (Appendix A5.1).  

 

c) Population structure 

Four populations and a pattern of hierarchical structure were identified using DAPC 

(Figure 5.3A). The first component separated two clusters that were further divided into two 

clusters by the second component (BIC plot in Appendix A5.5). The most likely number of 

clusters identified using STRUCTURE and the Evanno method was two (Figure 5.3Ba, 

Evanno plot in Appendix A5.6a), using both the correlated and uncorrelated allele frequency 

models. The majority of individuals (98%) were strongly assigned to one of the clusters 

(membership proportions Q > 0.80). As the DAPC indicated a hierarchical structure, 

STRUCTURE was re-run inside each of the two clusters. A further division was found within 

each of the two clusters (Figures 5.3Bb and 5.3Bc, Evanno plots in Appendix A5.6b and 

A.5.6c) with strong assignments for most individuals (96%).  
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Figure 5.3. (A) DAPC scatterplot showing the first two principal components for K = 4 

(Mediterranean = 1, Atlantic = 2, South = 3, North = 4). (B) Bayesian membership 

proportions of individual bottlenose dolphins inferred using STRUCTURE. Each vertical 

column corresponds to one individual, with the colors representing the membership 

proportions to each of the two clusters. Dolphins were sorted using their maximum 

membership proportions. The black vertical lines delimit the inferred populations. (a) Barplot 

for the highest level of genetic structuring between pelagic and coastal dolphins. Barplots for 

the second level of genetic structuring between (b) Mediterranean and Atlantic pelagic 

dolphins, and (c) South and North coastal dolphins.  

 

Finally, TESS detected four populations (Figure 5.4, DIC plot in Appendix A5.7), 

with 93% of individuals strongly assigned (Q > 0.80). Assignments were highly consistent 

among the methods with 93.5% of the individuals assigned to the same cluster across the 

three methods. Moreover, comparisons of TESS barplot (K = 4) and STRUCTURE barplot 

for K = 4 also indicated almost identical results for individual assignments (data not shown). 

Therefore, we considered that the population structure signal was strong and not linked to 

analytical artifacts.  
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Figure 5.4. Map of individual membership proportions per population identified by 

TESS. The color scale bar indicates the membership proportions, (a) Coastal South, (b) 

Coastal North, (c), Pelagic Atlantic (d) Pelagic Mediterranean. 

 

The first population identified by TESS (N = 119) was composed of individuals that 

were biopsy sampled or that stranded in the English Channel (France), three resident 

individuals that stranded in the Bay of Biscay (France) and stranded animals in South Galicia 

(Spain). The second cluster (N = 77) was composed of individuals biopsy sampled or stranded 

in Ireland, England or Scotland (including 10 previously photo-identified resident dolphins 

for the latter). These two clusters grouped together in the first level of differentiation 

identified by STRUCTURE and DAPC. These individuals were biopsy sampled in shallow 

and coastal waters (less than 20 m deep), or stranded in areas near resident populations (i.e. 

English Channel, Cardigan Bay (Wales, United Kingdom), Moray Firth (Scotland), South 

Galicia rias (Spain)) and included dolphins previously photo-identified. Moreover, for these 

populations, the most likely area of death of individuals for which it was possible to apply the 

drift prediction model indicated that they came only from coastal and shallow waters. These 

two populations were therefore composed by coastal dolphins, and named “Coastal South” 

(English Channel, Arcachon estuary and South Galicia resident groups) and “Coastal North” 

(United Kingdom and Ireland resident or mobile coastal groups) populations. Individuals 

biopsy sampled in pelagic waters of the NEA (including the Azores archipelago) and stranded 

animals along the west coasts of Europe formed a third population (N = 107). According to 

a) b) 

c) d) 
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the drift prediction model, individuals were likely to have died from coastal waters to the 

shelf edge. The last population (N = 52) was composed of individuals biopsy sampled in the 

Gulf of Cadiz and the deep waters of the Gibraltar Strait and by individuals stranded in 

Corsica. These two populations grouped together in the upper level of structure revealed by 

STRUCTURE and the DAPC. As the biopsied dolphins in this group were sampled in deep 

waters (> 200 m) of the Azores, the NEA and the Gibraltar Strait, these two populations were 

composed of pelagic individuals and named “Pelagic Atlantic” and “Pelagic Mediterranean” 

populations.  

The removal of one individual per pair of closely related individuals (25, 21 and 1 

individuals were removed from the Coastal South, Coastal North and Pelagic Mediterranean 

populations, respectively) did not change the inferred population structure.  

Gender was determined for 370 individuals (153 females, 217 males). No significant 

sex-biased dispersal was found for any of the tested indices (all P > 0.05) either among the 

four populations or between each of two main groups (coastal and pelagic). We had 

reasonable numbers of males and females in each group for the 292 adults included in the sex-

biased dispersal test (Coastal North = 23 females + 26 males, Coastal South = 39 females + 

70 males, Pelagic Atlantic = 32 females + 56 males and Pelagic Mediterranean = 20 females 

and 26 males). 

A total of 55 mitochondrial DNA (mtDNA) haplotypes were identified in the NEA 

dataset (including 53 haplotypes for individuals that were also genotyped for microsatellites, 

see Appendix A5.8 for the table of polymorphic sites). The median joining-network (Figure 

5.5) indicated that the majority of individuals in the coastal group shared haplotypes forming 

a lineage separated by 12 base pairs (bp) from the lineage including most haplotypes found in 

the pelagic group. Only two haplotypes were shared between the coastal and the pelagic 

group. Some haplotypes within the pelagic group were highly divergent, with 49 bp 

separating the two most distant haplotypes.  
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Figure 5.5. Median-joining network of mtDNA control region haplotypes found in bottlenose 

dolphins from the North-East Atlantic. Each circle represents a unique haplotype colored in 

proportion to the number of individuals from the populations inferred by TESS that share the 

haplotype (individuals for which the population could not be inferred by microsatellite data 

are shaded in black). Size of circles is proportional to haplotype frequencies. Black squares 

indicate either extinct or unsampled intermediate haplotypes. Black dashes indicate mutation 

steps between haplotypes. 

 

When using only 324 bp sequences to include haplotypes from other studies, the 

number of haplotypes was reduced from 6 to 4 for NEA coastal dolphins, and from 49 to 38 

for NEA pelagic dolphins (Figure 5.6). Haplotypes of the NWA were classified as coastal or 

pelagic following designation used in previous studies (listed in Appendix A5.2 and Patricia 

Rosel, personal communication). Coastal haplotypes from the NWA formed a completely 

separate lineage. Haplotypes from NEA and NWA pelagic individuals, from the Azores and 

Madeira, and from NEA coastal individuals were clustered together in the network. Eighteen 

haplotypes were shared between NWA pelagic and NEA pelagic, NEA coastal or Azores and 

Madeira dolphins. 
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Figure 5.6. Median-joining network of mtDNA control region haplotypes found in bottlenose 

dolphins from the North Atlantic. Each circle represents a unique haplotype colored according 

to the population where it was found. The haplotype frequencies were not taken into account. 

The two pelagic and coastal populations of this study were grouped. Black squares indicate 

either extinct or unsampled intermediate haplotypes. Black dashes indicate intermediate 

mutation steps between haplotypes. 

 

d) Genetic differentiation and genetic diversity in the NEA 

All nuclear FST, mtDNA FST and ФST pairwise comparisons were significant, with the 

highest level of differentiation found when comparing pelagic and coastal populations (Tables 

5.1 and 5.2). Comparisons of the two coastal populations also had a high mtDNA FST value. 

As identical results were obtained when excluding closely related dolphins, they were kept in 

the analyses.  
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Table 5.1. Pairwise microsatellite FST between populations. 

Population Coastal 

South 

Coastal 

North 

Pelagic 

Atlantic 

Pelagic 

Mediterranean 

Coastal South (N = 119) - 0.057** 0.133** 0.118** 

Coastal North (N = 77)  - 0.149** 0.157** 

Pelagic Atlantic (N = 107)   - 0.043** 

Pelagic Mediterranean  

(N = 52) 

   - 

** P < 0.01 after sequential Bonferroni correction. 

 

Table 5.2. Pairwise mitochondrial FST (above diagonal) and ФST (below diagonal) between 

populations. 

Population Coastal South Coastal North Pelagic 

Atlantic 

Pelagic 

Mediterranean 

Coastal South 

(N = 115) 

- 0.252** 0.279** 0.326** 

Coastal North 

(N = 76) 

0.233** - 0.195** 0.221** 

Pelagic Atlantic 

(N = 101) 

0.541** 0.349** - 0.071** 

Pelagic 

Mediterranean 

(N = 51) 

0.671** 0.445** 0.056** - 

** P < 0.01 after sequential Bonferroni correction. 



Chapter 5 – Bottlenose dolphin population structure 

 

 

123 

 

Mitochondrial genetic diversity was higher in pelagic populations than in coastal 

populations (Table 5.3). Despite similar sample sizes, the number of haplotypes in the coastal 

populations was considerably lower than in pelagic populations, with the majority of coastal 

individuals sharing two haplotypes and with no evidence of most common pelagic haplotypes 

(see Appendix A5.9 for haplotype frequencies by population).  

Nuclear genetic diversity (Allele Richness* (AR) and Observed Heterozygosity (Ho)) 

was significantly lower in coastal than in pelagic clusters (Wilcoxon test, P < 0.01, Table 5.3, 

Appendix A5.4 for values per loci per populations). All pairwise comparisons were 

significant except for the AR, which was not significantly different between the two coastal 

clusters. Lower numbers of private alleles were identified in coastal populations than in 

pelagic populations (Table 5.3). A significant heterozygote deficiency was detected in the 

Coastal North population (Table 5.3), which was likely due to the inclusion of closely related 

individuals since FIS was non-significant when they were removed (FIS = 0.029, P = 0.119). 
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Table 5.3. Mitochondrial and nuclear diversities for each population inferred by TESS. 

                                Mitochondrial Microsatellites 
Populations N No 

hapl. 

S h Π N F
IS
 P Ho He NA AR PA 

Coastal South 115 4 12 0.499 

(0.044) 

0.001 

(0.001) 

  

119 0.012 0.240 0.582 

(0.180) 

  

0.596 

(0.172) 

6.3 (2.8) 5.8 (2.6) 2 

Coastal North 76 5 13 0.667 

(0.042) 

0.006 

(0.003) 

77 0.062 0.002 0.486 

(0.180) 

0.541 

(0.191) 

5.8 (2.4) 5.3 (2.2) 2 

Pelagic Atlantic 101 38 41 0.929 

(0.013) 

0.014 

(0.007) 

107 0.008 0.236 0.734 

(0.131) 

0.770 

(0.131) 

9.8 (3.9) 9.0 (3.3) 48 

Pelagic 

Mediterranean 

51 15 28 0.902 

(0.022) 

0.013 

(0.007) 

52 0.018 0.154 0.700 

(0.158) 

0.726 

(0.140) 

7.8 (3.4) 7.8 (3.4) 8 

Overall * 369 55 46 0.883 

(0.011) 

0.012 

(0.006) 

355 0.103 0.000 0.631 

(0.139) 

0.715 

(0.142) 

10.8 

(5.2) 

8.7 (3.7) - 

N = number of individuals, No hapl. = number of haplotypes, S = number of polymorphic sites, h = haplotypic diversity, π = nucleotide diversity, 

FIS = inbreeding coefficient, P = FIS P-value, Ho = observed Heterozygosity, He = expected Heterozygosity, NA = mean Number of Alleles, AR 

= mean Allelic Richness, PA = total number of Private Alleles, SD in parenthesis when appropriate. *26 individuals that were not included in 

microsatellites analyses (due to amplification issues), and thus were not assigned to any population, were included in the overall values of 

mtDNA diversities. 12 individuals were successfully amplified for microsatellite markers but not for mtDNA. 
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e) Recent migration rates 

Estimates were highly consistent between runs, therefore results for a randomly 

chosen run were selected (Table 5.4). Estimates of recent migrations rates were low among all 

clusters: 1.1% per generation at most, and with 95% confidence intervals that included 0 

(Table 5.4).  

 

Table 5.4. Mean (and 95% CI) recent migration rates inferred using BayesAss. The migration 

rate is the proportion of individuals in a population that immigrated from a source population 

per generation. 

To 

From 

Coastal South 

  

Coastal North 

  

Pelagic Atlantic Pelagic 

Mediterranean 

Coastal South 0.990  

(0.979-1.000) 

0.004  

(0.000-0.012) 

0.003  

(0.000-0.008) 

0.003  

(0.000-0.009) 

Coastal North 

  

0.008  

(0.000-0.021) 

0.984 

(0.967-1.000) 

0.004  

(0.000-0.012) 

0.004  

(0.000-0.012) 

Pelagic 

Atlantic 

0.004  

(0.000-0.010) 

0.003  

(0.000-0.009) 

0.983  

(0.956-1.000) 

0.011  

(0.000-0.026) 

Pelagic 

Mediteranean 

0.010  

(0.000-0.026) 

0.009  

(0.000-0.024) 

0.009  

(0.000-0.024) 

0.973  

(0.947-0.999) 

The diagonal values represent the proportion of nonimmigrants in a population. 

 

f) Effective population sizes 

The two methods produced roughly similar contemporary effective size (Nec) 

estimates, with considerably lower estimates for coastal populations than for pelagic 

populations (Table 5.5). Using different priors for coastal populations in ONeSAMP, Nec 

estimates varied only slightly. Despite months of computation, pelagic population Nec 

estimates using ONeSAMP never converged.  
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Table 5.5. Contemporary effective population sizes corrected for overlapping generations 

(Nec) estimated using LDNe and ONeSAMP 

 LDNe ONeSAMP 

Coastal South 64 (56 - 74) 77 (62 - 108) 

Coastal North 32 (28 - 37) 46 (36 - 62) 

Pelagic Atlantic 7748 (1333 – infinite) Endless run 

Pelagic Mediteranean 231 (168  – 360) Endless run 

 

 

4) Discussion 

a) Hierarchical structure   

Bottlenose dolphins were hierarchically structured in the NEA. The strongest level of 

genetic differentiation was found between coastal and pelagic dolphins both with 

microsatellite and mtDNA markers. The NEA haplotype network indicated two separate 

mitochondrial lineages with no complete lineage sorting between coastal and pelagic 

dolphins. Shared haplotypes indicated possible migration, incomplete lineage sorting or 

introgression. As in the NWA (Natoli et al. 2004), genetic diversities were higher in pelagic 

than in coastal populations. Significant genetic structure was found within each of the two 

groups. Migration rates between populations were low (about 1% per generation or less). In 

the coastal group, individuals sampled in the UK and Ireland (Coastal North) formed one 

population. Eight dolphins were reported moving between east and west Scotland and 

between Scotland and Ireland coastal groups through photo-identification (Robinson et al. 

2012), which suggests that these wide-ranging individuals may maintain genetic connectivity 

between resident groups. This population was differentiated from neighboring English 

Channel dolphins and more distant Galician individuals. However, several resident coastal 

groups (e.g. Shannon estuary, Ireland; Iroise Sea, France, Sado Estuary, Portugal) were not 

sampled. Moreover, the Shannon population is genetically isolated from other inshore 

dolphins in Ireland (Mirimin et al. 2011). Thus, more structuring is expected in coastal 
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waters. In the pelagic group, individuals from the NEA were separated from individuals 

sampled in the gulf of Cadiz, Gibraltar Strait and Mediterranean Sea. Individuals sampled in 

the Azores clustered with 88 individuals from the rest of the NEA, which can be surprising 

given the large distance between the Azores and the shelf edge. Deep waters (> 200 m) are 

found very close to shore for this archipelago indicating that bottlenose dolphins inhabit 

oceanic environments. Photo-identification work indicated that resident individuals 

represented less than 5% of individuals found in the Azores, the majority of the individuals 

being transients or migrants (Silva et al. 2008). This could explain the lack of structure found 

in Quérouil et al. (2007) and our study, which contrasted with other oceanic archipelagos 

where genetic structure was found, like in Hawaii, where shallow water areas are larger and 

high site fidelity has been reported (Martien et al. 2011). Individuals of the Mediterranean Sea 

were considered as coastal in previous studies (Natoli et al. 2004; Natoli et al. 2005), which 

contrasted with their high genetic diversity and with our results indicating that they were 

pelagic. Some coastal groups are resident but movements were reported between Corsica and 

France (Gnone et al. 2011), indicating that individuals crossed pelagic waters. The pelagic 

habitat use was confirmed by aerial surveys conducted during winter where bottlenose 

dolphins were mainly sighted in deep-water (> 200 m) areas (SAMM, 2011/2012, E. Pettex, 

pers. comm.). We could however not exclude further population structuring within this area as 

we had a limited sample size and only samples from stranded individual for Corsica. Biopsy 

sampling of coastal and pelagic groups is therefore needed to assess Mediterranean Sea 

bottlenose dolphin population structure. 

To our knowledge, this is the first time that the structure and connectivity between and 

within pelagic and coastal bottlenose dolphin populations was investigated in the NEA. Three 

clustering methods relying on different assumptions produced extremely consistent results. 

We therefore concluded that the genetic signal is strong and inferences reliable. We 

emphasize that using different methods is particularly important when working on highly 

mobile animals for which geographical barriers are not obvious. It is still rarely done in 

marine mammal studies. In our case, the landscape genetic method was efficient at detecting 

and geographically delineating four populations. However, marine mammal studies using a 

landscape genetics approach are still scarce (but see Fontaine et al. 2007; Möller et al. 2011). 

Our study shed light on global patterns of population structure of bottlenose dolphins in the 

NEA. However, finer-scale population structure could exist within the identified populations, 
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as Bayesian clustering methods have been shown to be inefficient at detecting structure when 

differentiation levels are below FST of 0.02 (Latch et al. 2006; Chen et al. 2007). This work 

could therefore be the basis for more localized studies inferring finer-scale population 

structure. 

Although sampling stranded animals is a cost effective method, we acknowledge that 

not all animals dying at sea are likely to strand (see review in Peltier et al. 2012), which 

confers uncertainty about the representativeness of these samples. The use of the most likely 

area of death (Peltier et al. 2012) for part of the stranded individuals shed light on their origin, 

which was consistent with the genetic results separating coastal and pelagic bottlenose 

dolphins. Unfortunately, meteorological data were not available for the whole area, making it 

impossible to apply the model for the complete dataset. In addition, the most likely area of 

death does not necessarily correspond to living areas in particular if sick or weakened animals 

move to another area to die (e.g. closer to shore). Despite these caveats, the likely position of 

death was more indicative of the individual living area than stranding position. Moreover, 

Peltier et al. (2012) drift experiments with tagged individuals indicated a high precision of the 

model: 27.1 ± 24.5 km (mean distance between the observed stranding positions of the tagged 

animals and the positions predicted by the model). It is therefore a promising tool for the use 

of stranded dolphins in genetic studies, which has recently been questioned (Bilgmann et al. 

2011).  

 

b) Possible drivers of population structure 

A complex interaction between historic environmental processes and contemporary 

ecological and behavioral factors is likely to drive social cetacean population structure 

(Möller 2011; Amaral et al. 2012a; Amaral et al. 2012b). 

For bottlenose dolphins in the NEA, given the topology of the haplotype network, a 

single founding event of the coastal populations from the pelagic population could be a 

possible evolutionary scenario. This hypothesis is supported by the low genetic diversities and 

small effective population sizes of coastal populations. Founder events often involve few 

individuals, which leads to a loss of genetic diversity due to genetic drift. A similar scenario is 

suggested for NWA bottlenose dolphins (Hoelzel et al. 1998b; Natoli et al. 2004). When 
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placing our samples in the Atlantic basin context, the NEA coastal haplotypes were more 

closely related to the NWA pelagic haplotypes than to the NWA coastal haplotypes. The 

pelagic population is possibly undifferentiated in the North Atlantic (Quérouil et al. 2007) 

although this needs to be confirmed using a larger sampling size and nuclear markers. 

Founder events might therefore have occurred independently from this wide-ranging pelagic 

population when suitable coastal habitats were released during interglacial periods (Natoli et 

al. 2004) on the two sides of the Atlantic basin, and more recently in the NEA than in the 

NWA. These hypotheses should be tested using coalescent approaches. Nevertheless, our 

work indicated that evolutionary history of bottlenose dolphins may differ among oceanic 

regions. In Chapter 6, we use Approximate Bayesian Computation demographic analyses to 

estimate divergence times between ecotypes in the NEA. 

Genetically identified coastal bottlenose dolphins were only biopsy-sampled in 

shallow waters whereas genetically identified pelagic individuals were sampled in deep 

waters. This supports a habitat-driven population structure in bottlenose dolphins. Although 

sex-biased dispersal methods are known to have low power (Goudet et al. 2002) and thus 

caution should be taken when interpreting the results, we showed that both males and females 

were philopatric as found in several other bottlenose dolphin populations (see review in 

Möller 2011). This situation contrasted with the mammalian mating system where females 

tend to be philopatric as their reproductive success is mainly limited by food resources, while 

males tend to disperse as their reproductive success is constrained by access to mates (Emlen 

& Oring 1977; Greenwood 1980). Familiarity with natal habitat, in particular resource 

specializations, together with social structure and culturally and vertically transmitted 

behaviors could possibly contribute towards philopatry for both sexes (Sellas et al. 2005; 

Sargeant & Mann 2009; Möller 2011; Cantor & Whitehead 2013). These processes could lead 

to assortative mating and maintain divergence at a large-scale between the pelagic and coastal 

groups, and at a finer scale, within the two groups. Natal habitat preference through diet 

specializations was suggested as an important mechanism underlying cryptic population 

structure in terrestrial carnivores (Sacks et al. 2005; Pilot et al. 2012). Moreover, socio-

ecological factors also drove genetic divergence between killer whale populations specialized 

on distinct prey (Hoelzel et al. 1998a; Foote et al. 2011). For bottlenose dolphins in the NEA, 

localized stomach content (Scotland and Bay of Biscay) and stable isotope (Galicia) studies 

suggested that coastal populations were feeding on estuarine species while demersal or 
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demerso-pelagic fishes mainly found on the shelf edge (e.g. hake or blue whiting) were the 

main prey of presumably pelagic bottlenose dolphins (Santos et al. 2001b; Spitz et al. 2006; 

Fernandez et al. 2011a). The niche specializations of the two groups and the hypotheses 

described above are investigated in the next chapter.  

 

c) Effective population size estimates: small coastal vs large pelagic 

populations 

Effective population sizes were much larger for pelagic than for coastal populations 

which was consistent with their genetic diversities. As pelagic populations were likely to be 

very large, Ne estimates for these populations were not reliable (Tallmon et al. 2010). In 

addition, our sample size for the Pelagic Mediterranean population was relatively low for 

these approaches. For coastal populations, we had a sufficient number of samples (N= 77 and 

119) and high precision (25 microsatellites) to get reliable Ne estimates for small populations 

(N < 500) (Tallmon et al. 2010). However, our sampling scheme was not ideal. Two 

assumptions of both the linkage disequilibrium and Approximate Bayesian Computation 

methods were likely to be violated: closed populations and discrete generations. For the “no 

immigration” assumption, the bias could be considered negligible as migration rates were 

very low and at least for LDNe, migration rates below 5-10% should have little effects on Ne 

estimates (Waples & England 2011). The “discrete generations” assumption was clearly 

violated. First, bottlenose dolphins live up to 57 years and are sexually mature between 5 and 

14 years (Wells & Scott 1999). Second, our data, collected across a 22-year time period, 

included multiple cohorts and generations. Ne estimates obtained using samples with 

overlapping generations are likely to be biased downward (Waples 2010). Nevertheless, a 

study comparing different Ne estimate methods for a brown bear population showed that the 

Ne estimate obtained in ONeSAMP on multiple cohorts was similar to the harmonic mean of 

Ne estimates obtained from single cohorts using another method, the Estimator by Parentage 

Assignment (Skrbinsek et al. 2012). Robinson and Moyer (2013) found that Ne estimates are 

closer to the per generation Ne when only mature adults are sampled, which resulted to a 

downward bias of less than 15%. If it is not possible to sample only mature adults, Robinson 

and Moyer (2013) suggested that as many age classes as possible should be included in the 

analyses. As our dataset contained multiple age classes and generations, results were likely to 
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be biased downward. The downward bias depends also on the species’ life history. We 

corrected our estimates for a 15% downward bias (Nec) as a 10-15% downward bias was 

observed in a study using LDNe where mature adult bottlenose dolphins of different ages 

were sampled in Florida (Robin Waples, personal communication). Last but not least, Ne 

estimated using LDNe related to the effective number of breeders Nb (Waples 2005). Further 

empirical research is needed on the relationships between Nb and Ne, which could be 

particularly complex when generations overlap (Waples 2010). Nevertheless, the order of 

magnitude of the bias should be similar across our dataset. Our Nec estimates are on par with 

abundance estimates obtained from surveys in areas inhabited by each of the four populations. 

The NEA pelagic population abundance estimate from Scotland to Spain was tens of 

thousands of individuals (Hammond et al. 2009; Hammond et al. 2013). In the Mediterranean 

Sea, abundance was estimated to several thousands of individuals (Forcada et al. 2004; Gnone 

et al. 2011). According to mark-recapture studies, resident coastal population sizes were 

likely to be around 600-800 individuals for each of the two populations (Chapter 3 for the 

Normand-Breton gulf, López 2003; Pesante et al. 2008; see review for Ireland in Mirimin et 

al. 2011; Cheney et al. 2012). For these two coastal populations, the ratio between effective 

population sizes and census sizes may be around 5 to 10% based on our Nec estimates and 

abundances from mark-recapture studies, which is in the lower end of the range of values 

found in other species (Palstra & Ruzzante 2008).  

 

d) Management implications 

Coastal populations were isolated and their effective population size was small in 

comparison with pelagic populations. Estimated Nec (range: ~30 - 80) was close to the value 

of Ne = 50 under which Mace and Lande (1991) proposed that a population is in a critical 

state. Low effective population sizes might lead to a low adaptive potential to environmental 

changes (Hare et al. 2011). Ecological adaptation to specific habitats is likely to drive coastal 

populations’ structure (this study, Natoli et al. 2005; Rosel et al. 2009), which raises concerns 

about potential impacts from the currently increasing at-sea human activities. Habitat 

degradation in terms of organic contaminants and noise pollution from boat traffic and 

constructions (e.g. Pirotta et al. 2013) could strongly affect locally adapted coastal 

populations. In addition, in East England, a genetically differentiated population became 
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extinct and the estuary was never repopulated (Nichols et al. 2007). Several Special Areas of 

Conservation have been created throughout Europe for the management of bottlenose 

dolphins, however some important areas for the species still lack conservation measures. 

Given the vulnerability of small and isolated populations that live within increasingly 

disturbed environments, we recommend extending the habitat protection of the species in 

Europe. Moreover, ecotypes should be distinguished in management plans of the species. 

 

e) Ecotype delineation and future directions  

Our results showing weaker separation between the pelagic and coastal haplotypes in 

the NEA found using 324 bp in comparison with 682 bp sequences highlighted the 

importance of using long fragments of the mitochondrial control region to investigate ecotype 

delineation in bottlenose dolphins. We therefore recommend the use of long mitochondrial 

fragments to investigate recent and/or fine-scale genetic structure in delphinids displaying 

sequence variability levels similar to bottlenose dolphins.  

We employed an original approach to define ecotypes, considering Lowry’s (2012) 

definition as groups of ecologically distinct populations. In most studies, ecotypes were first 

described through diet, morphology or spatial distribution and then linked to genetic 

differentiation (e.g. Hoelzel et al. 1998b; Segura et al. 2006; Musiani et al. 2007). The latter 

approach sometimes led to the definition of ecotypes that were subsequently found not to be 

demographically and genetically isolated units (e.g. caribous Serrouya et al. 2012). For 

cryptic and mobile species for which we have only hints on ecology, genetic data could be an 

interesting first step in ecotype delineation. Previous distribution and diet studies gave us first 

clues on the ecological differentiation of coastal and pelagic bottlenose dolphins. Diet 

specializations and morphological traits of the two ecotypes in the NEA are further 

investigated in the next chapter. 
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1) Introduction 

 

Environmental variation is a major driver of evolutionary divergence. It can lead to 

natural selection on environment-associated traits which can trigger assortative mating, 

reproductive isolation and ultimately speciation (Schluter 2001; Funk et al. 2006). Adaptive 

divergence can evolve in allopatry when groups of individuals occur in contrasted separated 

environments (Mayr 1942) or in sympatry and parapatry when they have different ecological 

niches (Dieckmann & Doebeli 1999; Schluter 2001). In the absence of geographic barriers to 

gene flow, prey or habitat preferences among groups of individuals can lead to genetic and 

morphological differentiation. For instance, highly mobile top predators inhabiting 

neighbouring areas such as boreal forest and taiga/tundra grey wolves specialized on different 

prey (i.e. resident or migratory) and Galapagos sea lions from two distinct rookeries foraging 

in benthic and pelagic habitats are genetically differentiated. Their phenotype is also different 

and related to foraging strategies (Musiani et al. 2007; Wolf et al. 2008). Similarly, in some 

birds and post-glacial temperate lake fish species, individuals in sympatry, showing 

contrasting morphs adapted to different feeding ecology, are at different stages of genetic 

isolation (Huber et al. 2007; Knudsen et al. 2010).   

In addition, current genetic structure and morphological characters might result from 

both historical and current ecological conditions. Morphological characters can indeed evolve 

from very short to evolutionary time scales (e.g. Berner et al. 2010; Authier et al. 2011). 

Quaternary glaciation oscillations had a major role in shaping genetic diversity patterns, 

habitat release during postglacial periods has created ecological opportunities for evolutionary 

diversification in many species in the Northern Hemisphere (Hewitt 2000). The magnitude of 

influence of historical versus current processes on population structure can vary among 

species (e.g. Johansson et al. 2006; Shikano et al. 2010) and both can have an important role. 

For instance, arctic canids display contrasting patterns of genetic differentiation: non-existent 

for arctic foxes versus strong for grey wolves (Carmichael et al. 2007). These patterns are 

linked to historical processes (i.e. during the last glacial periods, foxes had a wide distribution 

while wolves persisted in small refugia) but also to distinct life-histories, social and dispersal 

behaviors. For instance, while foxes disperse over long-distances following their prey, 

wolves’ ecotypes (resident or migratory) disperse differently depending on their prey. 
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Preferential dispersal towards a habitat similar to the one of the juvenile life (Davis & Stamps 

2004) is likely a mechanism creating and maintaining divergence in highly mobile species. 

While this process may be “imprinted” in turtles or fishes (Lohmann et al. 2008), social 

learning of foraging techniques for particular prey or habitat may influence dispersal in social 

species having long-term bonds between mothers and calves (Carmichael et al. 2007; Musiani 

et al. 2007). Individuals may therefore have higher foraging success in familiar habitat where 

they can use learned hunting techniques, which might enhance their fitness. This process 

likely limits gene flow and facilitates local adaptation of ecologically distinct groups of 

individuals (Kawecki & Ebert 2004). 

Cetaceans, which are highly mobile, can show high levels of population structure. This 

structure is often suggested to be the result of historical processes, social structure or 

ecological specializations (e.g. Sellas et al. 2005; Hoelzel et al. 2007). However, genetic 

studies are rarely correlated with ecology and morphological studies apart for killer whales 

(reviewed in de Bruyn et al. 2013). To understand the forces shaping the structure of 

diversity, it is essential to integrate ecology and evolutionary approaches (Pelletier et al. 

2009) in particular for protected cetaceans for which experiments are impossible. 

Bottlenose dolphins in the North-East Atlantic form two genetically distinct ecotypes: 

coastal (i.e. generally occurring in waters less than 40 meters deep) and pelagic (i.e. mainly 

sighted in deep waters, Chapter 5). They are hierarchically structured with two populations 

within each ecotype. In the coastal ecotype, the Coastal North population includes individuals 

sampled around the United-Kingdom and Ireland, and the Coastal South population 

individuals of the French and Spanish coasts. The pelagic ecotype is divided in the Pelagic 

Atlantic and Pelagic Mediterranean populations (see Chapter 5 for details). However, the 

forces having shaped this population structure and the divergence of the two ecotypes are not 

yet understood. The main objective of this chapter is to address this question using a 

combination of population genetic and ecological approaches. First, we investigated the most 

probable population history using Approximate Bayesian Computation and correlated the 

inferences to past environmental conditions. We tested whether the timeframes of ecotype and 

population formations were compatible with the creation of new ecological niches. Then, we 

characterized the morphology and ecology (through the analyses of stable isotope ratios and 

stomach contents) of the two ecotypes in order to understand how ecotypic differentiation is 

maintained. By using complementary approaches, we shed light on how environmental 
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fluctuations and ecological specializations may have shaped genetic and morphological 

divergences of a marine top predator.  

 

 

2) Material and methods 

a) Genetic inference of the population demographic history 

Genetic dataset 

Population history analyses were based on 355 biopsy-sampled or stranded bottlenose 

dolphins analyzed for 25 microsatellites and a 681 base-pair portion of the mitochondrial 

DNA control region (mtDNA-CR, N = 343) in the previous chapter. Each individual was 

genetically assigned to one of four populations using spatially-explicit Bayesian clustering 

analyses (Chapter 5, Figure 6.1).  

 

Figure 6.1. Sample locations and genetic populations of bottlenose dolphins included in 

demographic history analyses. 
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ABC analysis 

We investigated the demographic history best describing the genetic dataset of the 

combined microsatellite and mtDNA markers using a coalescent-based Approximate 

Bayesian Computation (ABC) approach (Beaumont et al. 2002; Bertorelle et al. 2010; 

Csilléry et al. 2010, the general principle of this analysis is presented in Chapter 2.2c). We 

stratified the procedure in three steps (Figure 6.2): (1) Identify the most likely population tree 

topologies for our dataset among eleven alternative scenarios describing different potential 

population topologies (Figure 6.2a); (2) refine the topology of the best tree (Figure 6.2b); (3) 

and test the occurrence of bottlenecks along the population tree, when each population split 

from its ancestor (Figure 6.2c). 

For each step, an ABC analysis was conducted using the program DIYABC v2.0.4 

(Cornuet et al. 2014) and included several steps described in Appendix A6.1: (1) Coalescent 

simulations of 10
6
 pseudo-observed datasets (PODs) under each competing scenario and the 

calculation of summary statistics (SS) describing microsatellites and mtDNA sequences for 

each POD; (2) Select the best model by estimating the posterior probability of each scenario 

using a logistic regression on 1% PODs producing SS values closest to the observed ones; (3) 

Evaluate the confidence in scenario choice by estimating the Type-I and Type-II error rates 

based on simulated datasets; (4) Estimate the marginal posterior distribution of each 

parameter based on the best model(s); and finally, (5) Evaluate the goodness-of-fit of the 

model–posterior parameter distribution combination with the data. 

The parameters defining each scenario (i.e. population size, times of population size 

changes and splits, and mutation rates) were considered as random variables drawn from prior 

distributions (Figure 6.2, Appendix A6.2 and A6.3). For each simulation, DIYABC drew a 

value for each parameter from its prior distribution and performed coalescent simulations to 

generate a simulated POD with the same number of gene copies and loci per population as 

observed. It then calculated, for each POD, a set of summary statistics, which were also 

calculated for the observed data. A Euclidean distance δ was calculated between the statistics 

obtained for each normalized simulated dataset and those for the observed dataset (Beaumont 

et al. 2002). Details on the mutation model for microsatellite loci and mtDNA locus and the 

summary statistics used by DIYABC to describe within- and among population genetic 

diversity are provided in the Appendix.  
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Figure 6.2. Schematic diagram of hierarchical ABC analysis to compare various 

evolutionary histories and divergence scenarios generated and tested using the 

program DIYABC. 

CN: Coastal North 

CS: Coastal South 

PA: Pelagic 

Atlantic 

PM: Pelagic 

Mediterranean 
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Model selection procedure and confidence in scenario choice 

The posterior probability of each competing scenario was estimated using a 

polychotomous logistic regression (Cornuet et al. 2008; Cornuet et al. 2010) on the 1% of 

simulated datasets closest to the observed dataset (lowest Euclidean distance δ, see above), 

subject to a linear discriminant analysis as a pre-processing step (to reduce the dimensionality 

of the data, Estoup et al. 2012). The selected scenario had the highest posterior probability 

value with a non-overlapping 95% confidence interval (95% CI). We evaluated the ability of 

the ABC analysis to discriminate between tested scenarios by analysing simulated datasets 

with the same number of loci and individuals as our real dataset. Following Cornuet et al. 

(2010), we estimated the Type-I error probability as the proportion of instances in which the 

selected scenario did not give the highest posterior probability among the competing 

scenarios, for 500 simulated datasets generated under the best-supported model. We also 

estimated the Type-II error, by simulating 500 datasets for each alternative scenario and 

calculating the mean proportion of instances in which the best-supported model was 

incorrectly selected as the most likely model. 

 

Parameter estimation and model checking 

We estimated the posterior distributions of each demographic parameter under the best 

demographic model, by carrying out local linear regressions on the 1% closest of 10
6
 

simulated datasets, after the application of a logit transformation to parameter values 

(Beaumont et al. 2002; Cornuet et al. 2008). Following Gelman (2003), we evaluated whether 

the best model-posterior distributions combination was better able to reproduce the observed 

data compared to the alternative scenarios using the model checking procedure in DIYABC. 

Model checking was carried out by simulating 1,000 pseudo-observed datasets under each 

studied model-posterior distribution combination, with sets of parameter values drawn with 

replacement from the 1,000 sets of the posterior sample. This generated a posterior 

cumulative distribution function for each simulated summary statistics, from which we were 

able to estimate the P-value of the deviation of the observed value of each statistic from its 

simulated distribution under the best demographic model. 
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b) Ecological and morphological characterization of ecotypes 

Only ecotypes and not all populations were characterized in terms of ecology and 

morphometrics because of tissue and data availability. Stranded animals in the English 

Channel and the Bay of Biscay between 1991 and 2012 (N = 63) were used and included 21 

coastal (from the coastal South population apart from 3 individuals that were genetically 

assigned to the coastal North population) and 42 pelagic individuals (only from the pelagic 

Atlantic population), and 32 females, 30 males and one individual of unknown gender for 

which molecular sexing failed (see sampling locations in Appendix A6.4). Morphometric, 

stable isotope and stomach content analyses were performed on different datasets depending 

on morphometric measurement, non-decomposed skin and stomach availability. All selected 

individuals had a length greater to 200 cm to exclude suckling individuals as neonates δ
15

N 

values are up to one trophic level higher than their mothers (Fernandez et al. 2011a).  All 

statistics were performed in R 3.0.0 (R Core Team 2013). 

 

Morphometric analyses 

Ten external morphometric measurements including lengths of appendices and lengths 

from rostrum to various body parts (L1 to L10, illustrated in Appendix A6.5) were taken by 

trained observers of the French stranding network. Morphometric analyses were only 

performed on individuals with no missing measurements and that were not in decomposition 

to avoid biases (N coastal = 12 and N pelagic = 27 and N females = 20 and N males = 18, N undetermined 

= 1). As body length was not significantly different between the two ecotypes (Student t-test 

P = 0.28), all measurements were standardized over the total body length (L1) to control for 

different sizes and ages. As there were no trends in ratios from juveniles to adults, all 

individuals were included in the analyses. First, each ratio was compared between ecotypes 

using a Student t-test or a Mann–Whitney-Wilcoxon test (depending whether the data 

satisfied normality and homogeneity of variance conditions). Then, a Principal Component 

Analysis (PCA) was performed using the ade4 package (Dray & Dufour 2007) to test for 

morphometric segregation between ecotypes. In addition, to test for a division in the dataset, 

we performed a maximum-likelihood clustering analysis based on Gaussian mixture models 

with no a priori using the mclust package (Fraley et al. 2012). We used the default settings 
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and the best model was selected by BIC (Bayesian Information Criterion). A discriminant 

function analysis (DFA) was carried out to find the best combination of standardized variables 

that separated the two ecotypes using the ade4 and MASS packages (Venables & Ripley 

2002; Dray & Dufour 2007). Then, we reassigned individuals to each ecotype using the DF 

and estimated the rate of correct assignment. All analyses were also performed considering 

males and females separately.  

 

Stable isotope analyses  

Stable isotopes of carbon, sulfur and nitrogen were analyzed for 40 skin samples (N 

coastal = 14 and N pelagic = 26, N females = 24, N males = 15, N undetermined = 1). Sample preparation 

and analysis are detailed in Chapter 4.2.e and the principle of stable isotope analyses is 

described in Chapter 2.1.b. Stable isotope values are presented in the conventional δ notation 

relative to IAEA-1 and IAEA-2, Vienna Pee Dee Belemnite and atmospheric N2 for δ
34

S, 

δ
13

C and δ
15

N values respectively.  

Mean differences between coastal and pelagic dolphins and between males and 

females’ δ
34

S, δ
13

C and δ
15

N were compared using a Student t-test or a Mann–Whitney-

Wilcoxon test. Stable isotope niches of the two ecotypes were estimated using multivariate, 

ellipse-based metrics: SIBER (Stable Isotope Bayesian Ellipses in R, Jackson et al. 2011) 

implemented in the SIAR package (Parnell & Jackson 2011). The standard ellipse area (SEA) 

is defined by a subsample (40%) of the bivariate data (i.e. the ratios of δ
34

S and δ
13

C, δ
34

S and 

δ
15

N and δ
13

C and δ
15

N). SEA were corrected for sample size (SEAc), which is a robust 

approach when comparing small and unbalanced sample sizes. SEAB (Bayesian SEA) were 

calculated using 10
6
 posterior draws to statistically compare niche width between ecotypes 

(Jackson et al. 2011). The degree of SEAc overlap between ecotypes was also estimated. 

Convex-Hull Areas (polygons encompassing all the data points) were also computed and 

displayed. As described for morphometric analyses, the mixture model-based clustering 

analysis in the mclust package was used to estimate the most likely number of clusters and 

assign individuals to each cluster. Individual assignment probabilities were compared to 

genetic ecotypes. 
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Stomach content analysis 

Stomach content analysis (N coastal = 6, N pelagic = 24 for non-empty stomachs) was 

aimed at describing the diet in terms of prey occurrence, relative abundance and their 

percentage by ingested biomass, and followed a standard procedure for marine top predators 

(e.g. Pierce & Boyle 1991). Detailed for bottlenose dolphins in Spitz et al. (2006), analytical 

methods were based on the identification and quantification of prey remains including fish 

otoliths and bones, cephalopod beaks and crustacean carapaces. Food items were identified to 

the lowest taxonomic level by using published guides (Clarke 1986; Härkönen 1986; Xavier 

& Cherel 2009) and our reference collection. Allometric relationships allowed reconstructing 

individual prey body length and mass from otoliths, fish bones, cephalopod beaks or 

crustacean cephalothorax to provide quantitative description of diets.  

The dietary importance of each prey was described by its relative abundance (%N) and 

by ingested biomass (%M). Relative abundance was defined as the number of individuals of 

that species found throughout the sample. Biomass was calculated as the product of the 

average body mass and the number of individuals of the same species in each stomach, 

summed throughout the entire stomach set. These indices were expressed as percentage 

frequencies. Ninety-five per cent confidence intervals (95% CI) around the percentages by 

number and mass were generated for each prey taxon by bootstrap simulations of sampling 

errors (Santos et al. 2001a). The bootstrapping routine was written using R 3.0.0. Random 

samples were drawn with replacement and the procedure was repeated 1000 times. The lower 

and upper bounds of the 95% CI were the 25th and 975th values previously ranked in 

increasing order. The dietary overlap in mass (O) was obtained using the Pianka index 

(Pianka 1974), which varies from 0 (no overlap) to 1 (complete overlap); values greater than 

0.5 are considered to reveal a high overlap.  
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3) Results 

a) Genetic inference of the population demographic history 

We used a three-steps procedure to identify the demographic scenario best describing 

the genetic diversity in the four dolphin populations (Figure 6.2). Among the 11 scenarios 

tested in the first step (Figure 6.2a), the model SC2 showed the highest fit with the observed 

data, with a posterior probability (Ppr) of 64.7%, (95% CI: [62.6 – 66.7]). This scenario 

assumes that Coastal South (CS) and Pelagic Atlantic (PA) populations diverged first from an 

ancestral population, followed by the split of the pelagic Mediterranean (PM) population from 

the PA population and the Coastal North (CN) population from the CS population. The only 

other scenario receiving significant support, though much lower than SC2, was SC3 with a 

Ppr = 28%. This scenario assumes a symmetric hypothesis to SC2 in which PM and CN 

diverged first from each other, followed by the split of PA from PM and CS from CN. All the 

other scenarios had a Ppr of less than 3%. Therefore confidence in the SC2 scenario choice 

was strong. The evaluation of Type-I error rate (Appendix A6.6) showed that 68.6% of the 

datasets simulated with SC2 were correctly identified as being produced by SC2. False 

negative error rates could only be observed with SC3 (16.8%) and with SC1 (9.4%). 

Estimation of the Type-II error (i.e., false positive) was also very low especially when 

considering most of the alternative scenarios, with individual error rate lower than 5% 

(Appendix A6.6). The only scenario producing significant error rate was SC3, with 22.4% of 

PODs wrongly selected as being generated by SC2. Overall, excluding SC3, our analyses 

displayed a strong power (88%) to discriminate among the scenarios tested. A model 

checking of the goodness-of-fit of the scenario–posterior parameter distributions with the real 

dataset further showed that SC2 was the best at reproducing observed summary statistic 

values (Appendix A6.6). 

 

Step b (Figure 6.2) of the ABC analysis further refined the population tree (SC2) 

identified in step a. The scenario where PA is considered as the ancestral population from 

which CS split fitted the data much better (SC4, Ppr = 54%, 95% CI: [53.0–55.7]) than the 

scenario where both PA and CS split from the same common ancestral population (SC2, Ppr 

=15.7%, 95%CI: [14.2–17.3]). This scenario (SC4 Figure 6.2b) combined with its posterior 
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parameter distributions provides also a better fit with the observed data (see model checking 

in Appendix A6.7). 

Step c in the ABC analysis (Figure 6.2) aimed to assess the plausibility of a population 

bottleneck when each population split from its ancestral population. Of the 5 hypotheses 

tested (Figure 6.2c), the scenarios assuming a bottleneck in the CS population (SC2, 

Ppr=36.7%, 95%CI: [36.0 –37.4]) or no bottleneck (SC1, Ppr=35.7%, 95%CI: [35.0– 36.5]) 

received the highest supports, followed by the scenario assuming a bottleneck in the two 

coastal populations (SC3, Ppr=17.7%, 95%CI: [17.0–18.3]). The other scenarios assuming a 

potential bottleneck in the PM group (SC4) or in all group (SC5) received significantly lower 

support (Ppr ≤ 5%, Figure 6.2c and Appendix A6.8). However, the ABC analysis showed 

weak power to discriminate between the 5 scenarios, and especially between the first three 

(Appendix A6.8). Interestingly, the scenario best able to reproduce the observed data was 

SC3, assuming a bottleneck in the two coastal populations (Appendix A6.8 and A6.9). 

 

Considering the two most likely scenarios (SC1 and 2 in Figure 6.2c) and assuming a 

generation time of 20 years (Taylor et al. 2007), the splitting time between the CS and PA 

groups (t3, Figure 6.2c) would be ~10,320 years Before Present (yrBP) (95%CI: [4,300 – 

47,800]), between PM and PA (t2) about ~7,580 yrBP (95%CI:[2,340 – 22,600]), and 

between CS and CN (t1) ~2,560 yrBP (95%CI: [830 – 6,820]). Estimations of the effective 

population size were the highest in PA (12,200, 95%CI:[6,360 – 14,700], followed by PM 

(4,810, 95%CI:[1,500 – 9,200]), CS (2,160, 95%CI:[864 – 3,560]) and CN (1,990, 

95%CI:[678 – 3,660], Appendix A6.10). 

 

b) Morphometric analyses 

The most likely number of clusters using morphometric data was one. Univariate and 

multivariate analyses, except the DFA, failed to discriminate ecotypes when considering the 

whole dataset and sexes separately. The only ratio that was significantly different between 

coastal and pelagic dolphins was the proportion of the fluke to the total body length but the 

range of values from the two ecotypes overlapped (mean = 0.21, SD = 0.03 and mean = 0.24, 

SD = 0.02 for coastal and pelagic dolphins respectively). Only the DFA allowed to partially 
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discriminating ecotypes with 74% of dolphins correctly reassigned to their ecotype (0.89 and 

0.88 for males and females respectively). The variable that had the strongest weight in the 

analysis was the fluke length ratio. However, when the variables having the least weights 

were removed from the analysis, correct assignment rates decreased, which highlighted the 

need of the complete set of variables to be able to partially discriminate ecotypes. 

 

c) Stable isotope analyses  

Pelagic dolphins had higher δ
34

S (17.9 ± 0.7‰) and lower δ
15

N (14.2 ± 0.8‰) values 

than coastal dolphins (δ
34

S = 14.0 ± 1.0‰, δ
15

N = 15.7 ± 0.9‰, P < 0.01). There were no 

significant differences in δ
13

C values between the two ecotypes (δ
13

C = -16.2 ± 1.1‰ and -

16.7 ± 0.6‰ for coastal and pelagic dolphins respectively, P = 0.06). No differences were 

detected between males and females. Isotopic niche spaces of the two ecotypes were distinct. 

There was no SEAc overlap when considering δ
34

S and δ
15

N, and δ
34

S and δ
13

C values 

(Figures 6.3 and Appendix A6.11a). Little overlap (0.07‰²) was found with δ
13

C and δ
15

N 

values (Appendix A6.11b). SEAB calculated using Bayesian inference indicated a narrower 

niche width for pelagic dolphins (SEAB δ13C – δ34S = 1.3‰², SEAB δ13C - δ15N = 1.1‰²) than for 

coastal dolphins (SEA B δ13C – δ34S = 4.0‰², SEAB δ13C - δ15N = 3.1‰², P < 0.01) despite a larger 

sample size. Niche width was however not significantly different between the two ecotypes 

when considering δ
34

S and δ
15

N values (SEAB pelagic = 1.8‰², SEAB coastal = 3.0‰², P = 0.07). 

The Bayesian credible intervals based on 100 000 posterior draws can be found in Appendix 

A6.12a to A6.12c. 
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Figure 6.3. δ
34

S and δ
15

N signatures for genetically determined coastal and pelagic bottlenose 

dolphins. Solid lines indicate SEAc and dotted lines Convex Hull Areas and their respective 

areas values (‰²) are given in the legend. The star indicates the possible migrant. 

 

The most likely number of clusters was two with individuals assigned with high 

probability to each cluster (Figure 6.4). The isotopic clustering exactly matched the genetic 

groups apart from one individual which was classified as coastal with stable isotope analyses 

but was part of the pelagic genetic group. However, this individual was photo-identified with 

coastal resident dolphins in the English Channel over a two-year period before its death. 

 

Figure 6.4. Barplot of individual assignment probabilities to each of the two isotopic clusters 

and comparison with genetic groups. Each vertical bar represents one individual. The star 

indicates the possible migrant. 
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d) Stomach content analyses 

Despite a large prey diversity (30 species including fish, cephalopods and shrimps), 

one fish species, hake (Merluccius merluccius), largely dominated the diet of pelagic dolphins 

with around 55% of ingested biomass and 25% of the relative abundance (Table 6.1). 

Mackerel (Scomber scombrus) ranked second in term of ingested biomass with 11.4%M. 

Then, four other species made up a significant proportion of the diet with a relative abundance 

over 10%N: blue whiting (Micromesisitius poutassou), pout (Trispoterus spp.), sprat 

(Sprattus sprattus) and scads (Trachurus spp.).  

The diet of coastal dolphins appeared less diversified (14 species including fish, 

cephalopods and shrimps) although it was likely linked to a lower sample size. Mullets and 

pout were the dominant prey with respectively 30% and 31% of ingested biomass. 

Ammodytidae ranked second in terms of relative abundance (33.7%N) but reached 5% of the 

ingested biomass. 

Thus, the diet of both pelagic and coastal bottlenose dolphins were largely dominated 

by fish species, however the prey specific composition varied between the two ecotypes. The 

niche overlap calculated with the Pianka index is particularly low (0.11 by relative abundance 

and 0.16 by ingested biomass) strengthening the existence of dietary segregation between 

coastal and pelagic dolphins. 
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Table 6.1. Diet composition in relative abundance (%N) and ingested biomass (%M) of 

coastal (N = 6) and pelagic (N=24) bottlenose dolphins. 95% confidence intervals (CI 95%) 

are given in parentheses. 

  Coastal   Pelagic 

  %N (CI95%) %M (CI95%)   %N (CI95%) %M (CI95%) 

Sprattus sprattus       10.7 (0-28.9) 0.8 (0-2.9) 

Ammodytidae 33.7 (0-78.5) 5.2 (0-20.5)   2.9 (0-8.5) 0.1 (0-0.3) 

Scomber scombrus       3.6 (0.3-10.2) 11.6 (0.7-31.6) 

Trachurus spp. 1.1 (0-5.7) 1.1 (0-4.6)   10.5 (4.0-20.0) 5.4 (1.8-11.6) 

Mugilidae 35.9 (0-73.4) 29.8 (0-63.9)   1.1 (0.1-2.8) 6.5 (0-19) 

Sparidae       3.2 (0-11.2) 1.9 (0-6.5) 

Dicentrarchus labrax 3.3 (0-15.4) 6.9 (0-22.6)   4.4 (0.1-13) 5 (0.1-14.9) 

Merluccius merluccius       24.6 (12.9-41) 54.6 (28.2-75.5) 

Micromesistius poutassou 5.4 (0-22.7) 0.1 (0-0.4)   18 (2.4-39.9) 1.4 (0.4-3) 

Trisopterus spp. 5.4 (0-22.6) 31.1 (5.8-66.9)   10.7 (5.9-16.5) 2.1 (0.9-4.3) 

Pollachius spp. 1.1 (0-5.8) 7.6 (0-24.9)       

Other fish 3.3 (0-16.5) 1.3 (0-4.3)   4 (0-10.5) 3.6 (0-9.5) 

Loligo spp. 3.3 (0-7.7) 6.1 (0-14.3)   2.1 (0.7-4.2) 6.7 (0.7-17.9) 

Other cephalopods 2.2 (0-10.2) 0.1 (0-8.2)   2 (0-5.6) 1 (0.1-10.3) 

Shrimp 1.1 (0-4.5) <0.1 (0-0)   1.9 (0-5.3) <0.1 (0-0.1) 

 

 

4) Discussion 

a) Ecologically-driven demographic history of bottlenose dolphins in the 

North-East Atlantic 

Ecological conditions had a major role in driving genetic divergence of bottlenose 

dolphins in the North-East Atlantic (NEA). Approximate Bayesian Computation demographic 

analyses showed that divergence times between coastal and pelagic and between pelagic 

Atlantic and Mediterranean bottlenose dolphins correlated with important historical 

environmental fluctuations. First, we confirmed the often-suggested but never explicitly tested 

hypothesis of the founding of the coastal populations by the pelagic population (Chapter 5, 

Natoli et al. 2004). The divergence between the two ecotypes occurred between the Last 

Glacial Maxima and the post-glacial period (10,320 YrBP, 95%IC: 4,300 – 47,800). 

Therefore, the release of the continental shelf when sea ice retreated after 18,000 YrBP likely 

led to the colonization of coastal habitats by pelagic dolphins. In addition, although the 

analysis had relatively low power, this colonization was likely achieved by a small number of 
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individuals (i.e. a founder effect), which was a common pattern during postglacial periods. 

More generally, the end of the glaciations in the Northern Hemisphere had a major impact on 

genetic diversity (Bernatchez & Wilson 1998; Hewitt 2000).  

The divergence between pelagic Atlantic and Mediterranean populations occurred later 

(7,580 YrBP, 95%IC: 2,340 – 22,600), during the Mediterranean “Sapropel period”, which 

was a nutrient-rich period characterized by the deposition of organic-rich sediments on the 

seafloor. These sediments were formed as a result of increased primary productivity and re-

arrangements of water masses linked to increased freshwater inputs generated by high 

precipitation rates (Calvert et al. 1992; Rohling et al. 2009). While this phenomena was 

particularly intense in the Eastern Mediterranean Sea, other major oceanographic and 

biological changes occurred simultaneously in the Western part around 8,000 YrBP, as a 

result of increased inflows of Atlantic waters (Rohling et al. 1995). These new environmental 

conditions may have created a productive trophic chain favourable for bottlenose dolphins. 

Interestingly, these conditions were also likely suitable for harbour porpoises, a small 

cetacean with high energetic needs. The end of the Sapropel period led to the fragmentation of 

harbour porpoise populations as waters got too oligotrophic and warm for this cold-waters 

affiliated species (Fontaine et al. 2010; Fontaine et al. in press). In contrast, bottlenose 

dolphins, having a wider range including tropical regions and lower energetic costs (Spitz et 

al. 2012) are still currently observed in the Mediterranean Sea. 

These striking links between changes in environmental conditions and genetic 

divergences indicate that niche opportunities by the release of new habitats or changes in 

environmental conditions can be a major force creating genetic divergence even in highly 

mobile top predators.  

In contrast, the separation between the two coastal populations was not linked to a 

particular climatic event (2,560 YrBP, 95%IC: 830 – 6,820). Although it will require further 

investigations, philopatry or natal-biased dispersal as a result of habitat-specific learned 

foraging techniques together with social behavior might trigger genetic differentiation as 

suggested for bottlenose dolphins and other mobile social mammals such as killer whales and 

wolves (Sellas et al. 2005; Hoelzel et al. 2007; Musiani et al. 2007). Another hypothesis 

could be the fragmentation of a coastal meta-population as suggested in Nichols et al. (2007) 

who showed that a genetically discrete population in the Humber estuary (South-East 
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England) disappeared at least 100 years ago. This might be supported by the fact that effective 

population sizes for coastal populations estimated in DIYABC, which are averaged since their 

divergence, are 30 to 40 times larger than the ones obtained using LDNe and ONeSAMP 

which are based on the last few generations (Chapter 5). However as these results could also 

be linked to methodological differences (i.e. ABC analyses are based on coalescent 

simulations while LDNe and ONeSAMP use linkage disequilibrium among loci, Tallmon et 

al. 2008; Waples & Do 2008), these comparisons should be considered with caution, and 

additional evidences are required. 

 

b) Niche specializations maintain genetic divergence between coastal 

and pelagic ecotypes 

As bottlenose dolphins are highly mobile, and the marine environment has no obvious 

barriers to gene flow, the creation of new coastal niches after the end of the last glacial period 

is not sufficient to explain the maintenance of genetic divergence between the coastal and 

pelagic ecotypes. Using two complementary approaches we showed that current ecological 

niches of pelagic and coastal bottlenose dolphins were highly segregated. Stable isotope 

signatures and prey species in stomach contents are consistent with a coastal vs pelagic 

habitat/diet segregation (while δ
13

C and δ
15

N values are lower in offshore areas, δ
34

S are 

higher, Peterson & Fry 1987; Kelly 2000; Chouvelon et al. 2012). In addition, prey species 

exclusively occurring in coastal waters are found in the diet of coastal dolphins while species 

from the shelf-edge are only found in pelagic individuals. Stable isotope signatures of δ
13

C 

and δ
15

N of prey species analyzed in Chouvelon et al. (2012) were concordant with values 

found in the two ecotypes. Prey species have however not been analyzed for sulfur. Pelagic 

dolphin smaller isotopic niche width is consistent with an offshore more homogeneous 

environment in contrast to a mosaic of habitats in coastal areas. In addition, although pelagic 

bottlenose dolphin prey species in stomach contents are diverse, it is dominated by hake, 

whose large specimens are found mainly along the shelf-edge (Woillez et al. 2007). The main 

prey of both ecotypes are demersal, thus the main differences is the depth where they are 

found. Hence, we could hypothesize that different hunting techniques might be used and 

learned to feed in waters of different depth. Bottlenose dolphins might be philopatric or 

disperse in habitats similar to their natal ones as they will be able to use vertically learned 
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and/or culturally transmitted hunting techniques (e.g. Cantor & Whitehead 2013) and target 

familiar prey, which could enhance their foraging success. This hypothesis was suggested for 

other social mammals (e.g. Carmichael et al. 2007), with however rarely direct evidence of 

diet/foraging segregation such as in our study (but see Pilot et al. 2012). In addition, 

preferential associations with particular individuals that might be influenced by associations 

during juvenile life (Stanton et al. 2011) may also reduce dispersal. Hence, ecological 

specializations strengthen by social context likely maintain genetic divergence in this highly 

mobile top predator. However, stability in individual foraging specializations should be 

further investigated using stable isotope analyses in different dentin layers. We emphasize that 

stable isotopes could be a powerful tool to understand ecologically-driven cryptic genetic 

differentiation in a wide-range of taxa as shown in this study and a few others (Wolf et al. 

2008; Pilot et al. 2012).  

However, there is some behavioral plasticity in the foraging resources used. Indeed, 

clustering analyses on stable isotope data matched perfectly the genetic structure except for 

one individual. This dolphin photo-identified during two years in a coastal area had coastal-

like isotopic signatures but had been genetically identified as belonging to the pelagic group. 

Current migration rates are very low between ecotypes (Chapter 5). However, as haplotypes 

are shared between coastal and pelagic dolphins, the individual could possibly be a migrant. 

Despite niche segregation, some degree of behavioral plasticity might contribute to low levels 

of gene flow between ecotypes. Ecologically-driven complete genetic isolation could be a 

long process that might never reach completion or require time (e.g. Berner et al. 2010; Foote 

et al. 2013).  

 

c) Absence of strong influence of ecology on external morphological 

traits 

In contrast to our results, pelagic and coastal bottlenose dolphins in other areas of the 

world showed strong morphological differences. In the North-East Pacific, skulls of coastal 

bottlenose dolphins had larger rostrum and teeth than pelagic ones, which might be linked to 

contrasted diets (Perrin et al. 2011). In the North-West Atlantic (NWA), coastal individuals 

were smaller and had proportionally larger flippers possibly to get more manoeuvrability in 
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shallow estuaries and dissipate heat in warm waters than pelagic individuals inhabiting cold 

and open waters (Hersh & Duffield 1990). In addition, while coastal dolphins fed mainly on 

sciaenid fish, pelagic individuals fed on both fish and squid (Mead & Potter 1995). In the 

NEA, several hypotheses might explain the weak morphological differences. First, haplotype 

network and coalescent-based estimation of divergence times suggested that differentiation 

between the two ecotypes occurred more recently in the NEA than in the NWA (Chapter 5, 

Moura et al. 2013), giving less time for morphological divergence. In addition, coastal and 

pelagic habitats might be less contrasted in the NEA than in the NWA. In the NWA, 

environmental conditions might be very different between shallow, enclosed and warm 

estuaries, and cold pelagic waters. By contrast, in the NEA, coastal waters, at the northern 

range of the species, might be quite similar in terms of temperature and currents than pelagic 

waters, with the main difference being depth. In addition, both ecotypes fed on demersal prey. 

Thus, lower differences in ecological selective pressures might contribute to the lack of 

morphological differentiation. The only measure which is significantly distinct between the 

two ecotypes is the fluke width which is larger for pelagic dolphins and may confer more 

propulsion to dive in deep waters. We could not rule out more subtle differences that could 

not be captured with our relatively small dataset and differences in skull morphological 

features which should be investigated in the future (as in Perrin et al. 2011).  

 

d) Possible differential stage of speciation in the North Atlantic 

We showed that niche creation followed by niche specializations were major drivers of 

ecotype differentiation in bottlenose dolphins. Further work is needed to investigate 

ecological specializations among populations within ecotypes. Our study emphasizes that 

understanding the forces shaping genetic and morphological divergences in highly mobile and 

cryptic animals is only possible thanks to a combination of evolutionary and ecological 

approaches. They provide complementary information on current and historical time scales. 

Similar multi-approach studies could help to shed light on divergence patterns of a lot of other 

species.  

At a large-scale, bottlenose dolphins might show different stages of speciation 

throughout their North Atlantic distribution. The speciation process could be on-going and at 
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an early stage in the NEA and possibly complete in the NWA regarding to complete lineage 

sorting and strong morphological differentiation (Hersh & Duffield 1990; Hoelzel et al. 

1998b). Variations in strength of habitat differences, contrasted divergence times or 

behavioral plasticity may led to different stages of ecologically-driven genetic and 

morphological divergences for the same species across its range (e.g. for post-glacial fish and 

killer whales, Berner et al. 2010; Knudsen et al. 2010; Foote et al. 2013). We suggest that 

environmental opportunity to specialize may be the major factor driving ecological, genetic 

and morphological divergences.  
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1) Synthesis of the results  

 

The objectives of my dissertation were to describe and discuss the forces shaping the 

social and population structures of bottlenose dolphins in the Normano-Breton gulf (Chapters 

3 and 4) and the population structure of the species in the North-East Atlantic (Chapters 5 and 

6). Before discussing the fundamental (section 7.2 and 7.3) and applied (section 7.4) 

implications of our work, I summarize here the main findings of each result chapter.  

 

a) Bottlenose dolphin social, ecological and genetic structures in the 

Normano-Breton gulf 

In Chapter 3, using social structure analyses based on photo-identification data, 

bottlenose dolphins in the Normano-Breton gulf were shown to have a typical fission-fusion 

social structure. The majority of individuals showed ephemeral associations but had also a 

small proportion of long-term relationships. The dolphins of the gulf displayed two particular 

characteristics in comparison to other resident groups.  First, group sizes were large (mean = 

25) and variable (range: 1 to 100), which may be the result of ecological conditions such as 

resource predictability and availability. In addition, these dolphins formed three social clusters 

that were spatially segregated but not completely isolated from each other, i.e. their range 

largely overlapped and all individuals were indirectly socially connected. Using mark-

recapture models, 420 dolphins (95% CI: 331-521) were estimated to occur in the Normano-

Breton gulf, making this coastal community one of the largest identified along European 

coastlines. 

 

In Chapter 4, the social structure results obtained in Chapter 3 were compared with 

ecological and genetic structures. While a single population was identified using genetics (i.e. 

a portion of the mitochondrial DNA control region and 25 microsatellites), stable isotopes of 

nitrogen and sulfur revealed three ecological clusters, consistent with the social clusters 

defined in Chapter 3. The relative influence of sex, genetic relatedness and ecological 
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similarity on association patterns was tested. Contrary to my predictions and what is found in 

most studied bottlenose dolphin communities and many fission-fusion species, individuals did 

not preferentially associate with kin. Instead they associated with individuals of similar 

ecology. The absence of influence of relatedness and the large group sizes might be explained 

by ecological conditions such as the availability and predictability of prey. In addition, as 

coastal populations may have been more recently founded from a pelagic population in the 

North-East Atlantic than in other areas of the world (Chapters 5 and 6), bottlenose dolphins of 

the Normano-Breton gulf may exhibit social organization traits more similar to a pelagic 

population than a coastal one. Thus, a combination of ecological conditions, in particular 

resource availability and the absence of predators, individual behavioral preferences and 

population structure history may have shaped this population social organization.  

 

b) Bottlenose dolphin population structure in the North-East Atlantic 

In Chapter 5, the genetic structure of bottlenose dolphins in the North-East Atlantic 

(NEA) was investigated with an unprecedentedly large sampling size using a portion of the 

mitochondrial DNA control region and 25 microsatellites. Coastal and pelagic bottlenose 

dolphins were found to be highly segregated. Their structure was hierarchical, two 

populations were found within the pelagic (i.e. “Pelagic Atlantic” and “Pelagic 

Mediterranean”) and the coastal (i.e. “Coastal South” and “Coastal North”) ecotypes. 

Migration rates between ecotypes and among populations were found to be very low. 

Philopatry and restricted gene flow were suggested to be the results of ecological 

specializations and social behavior. Our mitochondrial data were also placed in an Atlantic 

basin-wide context, which indicated that coastal bottlenose dolphins in the NEA may have 

been more recently founded by the pelagic population than coastal dolphins of the North-West 

Atlantic. Estimation of effective population sizes, although having inherent bias, indicated 

that coastal populations were considerably smaller than pelagic populations. In addition, they 

were similarly scaled to abundance estimations from photo-identification and large-scale 

surveys. 
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In Chapter 6, the aim was to (i) investigate how the population structure and the 

formation of the coastal and pelagic ecotypes were triggered and (ii) to characterize the two 

ecotypes using ecological and morphological approaches. Approximate Bayesian 

Computation demographic analyses confirmed that the coastal populations originated from 

the pelagic Atlantic population. The times of divergence between the two ecotypes and the 

pelagic Atlantic and Mediterranean populations were correlated with past environmental 

changes (i.e. the end of the last glacial period and changes in the Mediterranean Sea 

oceanographic conditions). Thus, ecological opportunities likely triggered genetic divergence. 

Coastal and pelagic bottlenose dolphin ecological niches (investigated using stomach contents 

and stable isotopes) are currently highly segregated. Therefore, ecological specializations, 

which may be strengthened by social behavior, likely maintain genetic divergence. In contrast 

to other areas in the world, only weak morphological differences were found between the two 

ecotypes. This may be explained by low contrasts between coastal and pelagic habitats. The 

main conclusion was that foraging habitats, characterized by different prey communities, are 

key factors driving ecological, genetic and morphological divergences. 

 

2) Structuring patterns of bottlenose dolphins and other mobile 

social predators: interaction between ecology, sociality and genetics 

 

a) The central role of ecology in shaping the structure of populations 

The results of my PhD showed that ecological structure strongly influenced social and 

genetic structures. At a fine-scale level, individuals may associate preferentially with 

individuals having similar ecology, and thus possibly foraging behavior. It is however not 

possible to unravel if individuals associated because of similar ecology or if they have similar 

ecology because they associated preferentially according to others traits difficult to measure 

in cetaceans such as age or previous familiarity, which influenced association patterns of 

other species (e.g. Wey & Blumstein 2010; Garroway et al. 2013). This hypothesis is 

supported by possible evidences of preferential associations of bottlenose dolphins according 

to feeding behavior in other parts of the world (e.g. between individuals using similar feeding 

techniques such as sponges to search for prey on the seafloor or feeding on trawl fishery 
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discards, Ansmann et al. 2012a; Mann et al. 2012; Cantor & Whitehead 2013). However, 

ecological behavior may also be transmitted horizontally between associated individuals (e.g. 

Whitehead et al. 2004; Cantor & Whitehead 2013). For example, depredation behaviors on 

long-line fisheries of killer whales around Crozet island (Southern Ocean) have most likely 

been transferred socially between groups that associate the most frequently (Tixier 2012). 

On a large-scale, individuals likely mate preferentially with individuals foraging into 

similar habitats for similar resources. Although reproductive isolation is not complete, coastal 

and pelagic bottlenose dolphin ecotypes, being segregated at the spatial and trophic levels, are 

highly genetically differentiated. Ecologically-driven reproductive isolation may also explain 

the differentiation of other social top predator ecotypes such as killer whales or wolves 

(Hoelzel et al. 2007; Musiani et al. 2007) and ecotypes of non-social species such as post-

glacial lake fishes (Rundle et al. 2000; Knudsen et al. 2010; Siwertsson et al. 2013).  

As the acquisition of resources, both in terms of diet and habitat, has a strong 

influence on individual reproductive success and fitness (Schoener 1971; Pyke et al. 1977; 

Morse & Fritz 1987; Frey-Roos et al. 1995; Pärt 2001; Thayer & Sydeman 2007), it is not 

surprising that ecology has a major influence on social and genetic structures. Indeed, 

individual and population niche specializations are considered as important drivers of 

evolution (Bolnick et al. 2003; Knudsen et al. 2010). 

In this dissertation, I advanced the study of correlation between ecological and genetic 

structures by investigating how niche specializations and subsequent genetic divergences 

were triggered. Given the correlation between the divergence times (i.e. between the two 

ecotypes and the two pelagic populations) and past climatic changes, environmental 

opportunity likely led to niche specializations. Climatic variations during glaciations shaped 

the genetic diversity of terrestrial species in the Northern Hemisphere (Hewitt 1996, 2000). 

Likewise, in the marine environment, although evidences are fewer, past changes in 

oceanographic conditions, in particular sea surface temperatures or resource availability, were 

suggested to have shaped genetic diversification patterns of other top predators such as 

common dolphins and minke whales at oceanic scales (Pastene et al. 2007; Amaral et al. 

2012b) and of harbor porpoises at the scale of the NEA (Fontaine et al. in press). 

On a fine-scale, no evidence is available on how niche specializations among social 

clusters were created. Nevertheless, several hypotheses could be formulated based on a 
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literature review. First, similarly to large-scale structuring patterns, habitat or resource 

heterogeneity is likely an important driver of such segregation. Habitat characteristics were 

linked to different hunting strategies in other bottlenose dolphin populations around the world 

(Sargeant et al. 2007; Torres & Read 2009; Tyne et al. 2012).  In the Normano-Breton gulf, 

habitats are diverse and vary from sandy to rocky sea floors. Although recording feeding 

techniques visually was not possible in the gulf, dolphins of the different social clusters, 

differing in their habitat use as confirmed by their stable isotope signatures, may possibly 

differ in their foraging behavior and prey choice. However, further investigations and data are 

required to investigate differences in habitat use and diet of individuals belonging to the 

different clusters. Applying mixing models on stable isotope signatures of bottlenose dolphins 

of the different clusters and possible prey species may for example help to reveal possible 

dietary differences (Parnell et al. 2010). Another hypothesis could be, as suggested for 

another marine mammal (i.e. the sea otter), that fine-scale foraging specializations may have 

arisen as a result of intraspecific competition and low interspecific competition (Estes et al. 

2003). Bottlenose dolphins are one of the most abundant top predators in the Normano-Breton 

gulf; there are also small colonies of breeding harbor seals (50 to 70 individuals) and non-

breeding grey seals (10 to 20 individuals). Harbor porpoises are encountered only seasonally 

and sightings of other cetacean species are scarce.  In addition, seabirds are also found in the 

area.  

 

b) Social behavior likely strengthens the influence of ecology on genetic 

structure 

Social behavior, in particular social learning, likely strengthens the link between 

ecology and genetic structure. It may play an important role in the maintenance of ecological 

specializations and genetic divergence.  

In mammal species such as dolphins, killer whales, wolves, coyotes and sea otters, 

offspring are found to maintain bonds with their mothers lasting from months for sea otters 

(Estes et al. 2003) to years for bottlenose dolphins (reviewed in Wells & Scott 1999; Connor 

et al. 2000) and life-span for killer whales (Bigg et al. 1990). During the calf and juvenile 

dependency periods, young individuals learn foraging techniques by observation, imitation or 

assistance (Guinet 1991; Estes et al. 2003; Mann & Sargeant 2003; Sargeant & Mann 2009). 
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These learned foraging techniques might be particularly adapted to specific habitats or prey. 

Thus, when using these learned techniques on familiar prey or in familiar habitats, individuals 

will likely have higher foraging success and subsequently possibly higher fitness (reviewed 

for wolves in Pilot et al. 2006). It may therefore be beneficial to stay philopatric or disperse in 

habitats similar to the natal area. As suggested in Chapters 5 and 6, this process may explain 

fine-scale genetic structure of highly mobile mammals (Sacks et al. 2005; Pilot et al. 2006; 

Musiani et al. 2007) including bottlenose dolphins in the North-East-Atlantic (NEA). In 

addition, in cetaceans, culturally transmitted behavior may also shape large-scale population 

structure (Whitehead 1998) or within population structure (Kopps et al. 2014). For instance, a 

vertical cultural transmission of a tool-use and habitat-specific feeding technique (i.e. 

sponging) may explain fine-scale geographical structure of mitochondrial DNA haplotypes of 

bottlenose dolphins in Western Shark Bay, Australia (Kopps et al. 2014).  

On a fine-scale, individuals associated non-randomly and similarity in ecology may 

influence association patterns or vice versa. In addition, other traits such as familiarity during 

juvenile life (Tsai & Mann 2013), or reproductive state (Möller & Harcourt 2008) may 

contribute to association patterns in this species. These non-random associations with 

preferential individuals and social group ecological specializations on a fine-scale may reduce 

dispersal and create genetic structure at a larger-scale (for example between individuals from 

the Normano-Breton gulf and from Scotland or Wales, United Kindgom). The fact that we did 

not found any preferential associations between relatives in the Normano-Breton gulf may 

seem counterintuitive with the latter hypothesis of philopatry. However, we still found pairs 

of first-order relatives in the Normano-Breton gulf (Chapter 4), randomly spread across the 

population. As in other populations, offspring, while staying within the population, might tend 

to decrease associations with their mothers after weaning (Tsai & Mann 2013).  

On the other hand, behavioral plasticity in fission-fusion societies may counteract 

genetic divergences. For instance, the disappearance of the social division between trawler 

and non-trawler bottlenose dolphins after the limitation of the trawling in Moreton Bay 

indicated that social structure can be adaptive and resilient to disturbance (Ansmann et al. 

2012a). Moreover, in another population, dolphins that were likely immigrants were as 

socially integrated as the local individuals (Wiszniewski et al. 2010b). Similarly, the social 

segregation between local African elephants and translocated individuals decreased over time 

(Pinter-Wollman et al. 2009). Social plasticity may explain the observation of a pelagic 
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bottlenose dolphin with coastal dolphins in the Normano-Breton gulf (see Chapter 6). While 

this individual was not included in social structure analyses as it was only identified four 

times, it associated with resident dolphins. Although migration rates between ecotypes are 

very low, social plasticity may contribute to the incomplete reproductive isolation between the 

two ecotypes. 

 

c) Influence of evolutionary history on social structure  

As discussed in the previous paragraph, social structure may maintain genetic 

divergence. In turn, large-scale genetic structure might have an influence on social structure. 

As hypothesized in Chapter 4, Normano-Breton gulf dolphins may share some social structure 

characteristics with pelagic dolphins such as the absence of kin structure and large group sizes 

(Möller 2011) as the two ecotypes shared relatively recent ancestry. The influence of 

evolutionary history on social structure was so far mostly considered in terms of phylogenetic 

inertia in the literature. Studies on primate social systems showed that some closely related 

species have considerable similarity in social structure despite high environmental variations 

(Di Fiore & Rendall 1994; Ossi & Kamilar 2006; Chapman & Rothman 2009). For instance, 

despite Cercopithecoids range in a large variety of habitat types and are ecologically diverse, 

their social structure is highly similar. Shared social characteristics (e.g. female grooming 

relationships, grouping with kin, coalition, allomothering) appear to be linked to female 

philopatry (Di Fiore & Rendall 1994). In addition, social structure of Eulemur was linked to 

phylogenetic distance among populations (Ossi & Kamilar 2006). In some birds and equids, 

phylogenetics also predict variations in social behavior (Prum 1994; Linklater 2000). It is 

important to mention that we do not aim to minimize or contradict the influence of 

environment on social structure, which is more than well-established (see the rationale in 

Chapter 1.2, Alexander 1974; Rubenstein & Wrangham 1986). However, in some species, 

evolutionary history may also play a role. Evolutionary history has rarely been considered 

within species and in marine mammal social structure studies. Nonetheless, Beck et al. (2012) 

suggested that phylogenetic signal might influence the social structure of killer whales as their 

primary social unit, composed by long-term associates, is conserved in the Pacific and 

Atlantic oceans regardless of the ecology of individuals (i.e. eating fish or mammals). 

However, the second level of social organization (i.e. associations between these cohesive 
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groups) is more similar between the Atlantic and Pacific mammal-eating groups and between 

the Atlantic and Pacific fish-eating groups than between ecologically different groups within 

oceans, supporting the influence of ecology on social structure. Associations between groups 

hunting for seals were lower, possibly to limit the chance to be detected by seals (Baird & Dill 

1996) while several groups can hunt cooperatively for fish (Nøttestad et al. 2002). 

Our study also emphasized that it may be important to consider evolutionary history 

when investigating social structure. As detailed above, the social structure of coastal 

bottlenose dolphins in the Normano-Breton gulf may be derived from a pelagic population 

possibly because of a relatively recent divergence between ecotypes (i.e. after the Last Glacial 

Maximum). Given the rapid responses of fission-fusion societies to environmental conditions 

in a wide range of species (Wittemyer et al. 2005; Smith et al. 2008; Henzi et al. 2009), we 

however expect that adaptation to coastal environment would have had largely sufficient time 

to arise. Thus, some traits might be conserved over large temporal scales. An alternative 

hypothesis is that similar social structure could be selected in different environments. 

However, in contrast to pelagic individuals (Wells et al. 1999; Silva et al. 2008), resource 

predictability possibly led to the residency of coastal dolphins. Nevertheless, evolutionary 

history and ecology likely interact in shaping the social structure of coastal bottlenose 

dolphins.  

 

3) Combination of scales and approaches to study the structure 

and evolution of populations 

 

As detailed in the introductive chapter, cetaceans are notoriously difficult to study as 

they spend most of their time underwater and field work is constrained by weather conditions. 

The results obtained in my dissertation on the social and population structures of bottlenose 

dolphins in the North-East Atlantic and the underlying driving factors were achieved based on 

a combination of approaches at different spatial and time scales. 
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a) Combination of spatial scales  

The previous section highlighted the interest of combining studies on the fine and 

large-scale structures of populations. In short, fine-scale non-random association patterns and 

ecological structure of social groups such as the ones recorded in the Normano-Breton gulf 

may explain reduced dispersal and the larger scale genetic structure in the NEA. In addition, 

genetic structure and evolutionary history in the NEA may help to understand social structure 

in the Normano-Breton gulf. Thus, even if bottlenose dolphins are extensively studied, 

combining spatial scales enabled us to explain particular structuring characteristics of 

bottlenose dolphins in the NEA. In lesser studied species, for which opportunities for 

comparisons are limited, combining spatial scales may even be more valuable in 

understanding the forces shaping the structure of populations. 

 

b) Combination of approaches 

All the approaches used here have inherent limitations when taken individually and 

inform on the structure of populations at particular time scales. However, combining these 

approaches is very powerful to shed light on the ecological and evolutionary mechanisms 

shaping the structure of populations.  

 

Fine-scale social and population structures of bottlenose dolphins in the Normano-

Breton gulf  

We used photo-identification, stable isotope and genetic approaches to study the social 

and population structures of bottlenose dolphins in the Normano-Breton gulf. Photo-

identification studies are constrained in time and space. One of the major limitation of stable 

isotope analyses is the difficulties of interpretation, especially when stable isotope values of 

baseline trophic levels are unknown as various environmental and biological processes may 

contribute to isotopic signature variations (reviewed in Ramos & Gonzalez-Solis 2012). Using 

a combination of the two approaches enabled us to exceed the results that could be achieved 

should the techniques be applied individually. Indeed, the combination of these data supports 

site fidelity and the partitioning of habitat and or resource use among social clusters. 
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Although we found similar social and ecological structures for bottlenose dolphins in 

the Normano-Breton gulf, a single genetic population was identified, indicating random 

mating. As ecological niches of the different social clusters are segregated, with overlap still 

evident, there might not be enough environmental opportunity to facilitate specialization and 

divergence. We could however not totally exclude too recent or too weak divergences to be 

detected with our set of markers. Genetic structure is indeed integrated over several 

generations when working with traditional neutral markers such as mitochondrial DNA or 

microsatellites. Even in the absence of structure at these markers, adaptive divergence may 

take place (Thibert-Plante & Hendry 2010).  

Although it may not be relevant for the Normano-Breton gulf given the very small 

spatial scale and the fact that we did not reveal sharp ecological differences, genomics could 

be a promising approach to detect fine-scale levels of genetic structure. Large numbers of 

molecular markers, either neutral or under selection, such as Single Nucleotide Polymorphism 

(SNP, i.e. a variation of a single nucleotide in a DNA sequence) can be obtained from the 

whole genome using Next-Generation-Sequencing approaches (the applications of SNPs in 

population genetics is reviewed in Helyar et al. 2011). This genome-wide polymorphism can 

be used to identify loci under selection. Selection can be detected using multiple approaches 

(Nielsen 2005). For example, loci under selection, can be detected using outlier tests, which 

detect loci that show greater or lower genetic differentiation among populations than would be 

expected under neutral conditions (Storz 2005). These approaches are progressively applied in 

non-model organisms. Several examples in the literature indicated the power of outlier loci to 

detect structure (i.e. adaptive divergence) among populations that cannot be detected when 

using neutral loci (i.e. either large numbers of new genomic markers or more conventional 

markers). For instance, population structure of hake in the North-East Atlantic and the 

Mediterranean Sea was revisited, and revealed stronger large-scale structure and previously 

undetected fine-scale population structure when using loci under selection in comparison to 

neutral loci (Milano et al. 2014). Similarly, genetic structure between ecologically distinct 

stream and shore Okanagan Lake kokanee was only detected with outlier loci (Russello et al. 

2012).  These approaches could be useful to detect adaptive divergence in cetacean species 

inhabiting heterogeneous environments. 
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Large-scale population structure of bottlenose dolphins in the North-East Atlantic 

The combination of genetic, ecological and morphological approaches was invaluable 

to understand the evolutionary history and the drivers of ecotype differentiation of bottlenose 

dolphins in the North-East Atlantic. In addition to identify genetic structure, genetic 

approaches have also the power to reconstruct the past demographic history of populations 

thanks to coalescent-based simulations (e.g. Kuhner 2009; Bertorelle et al. 2010). In contrast, 

ecological approaches reveal ecotype structure at recent time scales: a few days for stomach 

content analyses to several weeks to a few months for stable isotopes in skin (Hicks et al. 

1985; Browning et al. 2014). Morphological characters may evolve from short to evolutionary 

time scales (e.g. Berner et al. 2010; Rode et al. 2010). Here, the genetic and the two 

ecological approaches produce highly consistent results clearly distinguishing bottlenose 

dolphin coastal and pelagic ecotypes on short to evolutionary time scales. Only a 

weak morphological segregation was detected between the two ecotypes. Nevertheless, the 

other approaches allowed for the generation of hypotheses about the lack of a strong 

morphological differentiation (Chapter 6).  

Last but not least, we used clustering methods with no a priori to detect fine-scale and 

large-scale structuring patterns on photo-identification, ecological, morphological and genetic 

data. Results obtained using objective statistical analyses should be reliable. 

 

Combining approaches – studies beyond bottlenose dolphins in the NEA 

Studies using multiple approaches are increasing, bridging the gap between genetics 

and ecology. Multiple approaches have been successfully employed to define population 

structure in some other species. For instance, large-scale population structure of bluefin tuna 

in the Atlantic and the Mediterranean Sea, and the intermingling of adolescents originating 

from both spawning locations in the North-West Atlantic feeding grounds was determined 

based on results from a combination of electronic tagging, genetics, stable isotope analyses on 

otoliths and organochlorine tracers (Block et al. 2005; Carlsson et al. 2007; Rooker et al. 

2008a; Rooker et al. 2008b; Dickhut et al. 2009). The intermingling in North-West Atlantic 

feeding grounds was higher than previously estimated using only conventional tagging, which 

was highly dependent on fisheries recaptures (see introduction in Rooker et al. 2008b). In 
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addition, a combination of tracking data and stable isotope analyses helped to understand 

barriers to gene flow between two genetically differentiated Cook’s petrel populations at the 

extreme North and South of New Zealand (Rayner et al. 2011). Gene flow may be limited as a 

result of habitat specializations during the breeding and non-breeding seasons, breeding 

asynchrony and philopatry (Rayner et al. 2011). The success of multiple approaches can also 

be illustrated by the integration of ecological behavior (i.e. telemetry) and genetic data that 

shed light on the possible drivers of cryptic genetic structure of highly mobile carnivores. For 

instance, for coyotes, fine-scale behavioral studies based on the estimation of relatedness of 

radio-tracked individuals among packs within and between mountain and valley habitats 

indicated that dispersal across bioregions was rare (Sacks et al. 2005), confirming the results 

from a larger-scale genetic population structure study (Sacks et al. 2004). Similarly, the 

genetic and morphological differentiation between taiga/tundra and boreal forest wolf 

ecotypes was related to different migration patterns linked to prey specializations revealed by 

telemetry (Musiani et al. 2007). Evolutionary history analyses can also benefits from a 

multidisciplinary approach. For instance, the patterns of invasion and adaptation to a cold 

environment of an invasive ant species were revealed using a combination of genetic 

analyses, distribution modeling and common-garden experiments (Rey et al. 2012).  

 

Stable isotope signatures are progressively used to test the influence of ecology on 

genetic structure (e.g. for wolves, killer whales and whitefish, Foote et al. 2009; Pilot et al. 

2012; Foote et al. 2013; Siwertsson et al. 2013). Our study also highlighted their power to 

link ecological and genetic divergences. Nonetheless, a gradient in baseline stable isotope 

values or differences between habitats or prey are needed for stable isotopes to be useful. 

Similar approaches to our study could be employed in any study linking genetic divergence to 

possible prey specializations. For instance, the studies of coyotes and wolf genetic structure 

cited above (Sacks et al. 2005; Musiani et al. 2007) could be complemented by stable isotope 

analyses on the samples used for genetics. Stable isotope analyses could be performed on a 

larger sample size than telemetry (e.g. it was found powerful to infer different habitat use in 

southern elephant seals, Authier 2011). 
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Last but not least, our results support the fact that the combination of ecological, 

morphological and molecular data is essential to delineate species (Raxworthy et al. 2007; 

Crandall 2009) or to investigate on-going speciation. Coastal and pelagic bottlenose ecotypes 

in the NEA may be at an early stage of on-going speciation (Chapter 6) with ecology being an 

important driver of reproductive isolation. However, I suggest but cannot explicitly test that 

reproductive barriers have evolved because of adaptation to different environments. 

Ecological speciation is indeed difficult to identify, and a lot of studies invoked causation 

while only demonstrating correlation (Hendry 2009). Thus, caution should be taken when 

raising ecological speciation especially when experiments are not possible (Hendry 2009).  

To conclude this section, I encourage the use of similar multidisciplinary approaches 

to describe the population structure and unravel eco-evolutionary population histories of any 

taxa. These integrative studies are also of major interest for conservation as detailed in the 

next chapter.  

 

 4) Implications for conservation 

Our work has also practical applications for the management of bottlenose dolphins in 

the Normano-Breton gulf and the North-East Atlantic, as well as more general 

recommendations for the delineation of conservation units.  

 

a) Conservation of bottlenose dolphins in the Normano-Breton gulf 

While one genetic population was identified in the Normano-Breton gulf, three social 

and ecological clusters were found. However, all individuals were socially indirectly inter-

connected and ecological clusters were not completely segregated. If we consider a 

management unit as a demographic unit so that population dynamics is driven by local birth 

and mortality rates (Palsbøll et al. 2007), one single management unit may be defined for 

bottlenose dolphins in the Normano-Breton gulf. However, since external pressures could 

impact social clusters differently, the persistence of the social and ecological clusters should 

be carefully monitored in the future. Distinct social or ecological clusters could be integrated 

in demographic analyses as co-variates (in a similar way to age or sex) to test if any cluster is 
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on a different demographic trajectory. Indeed, pilot whales social clusters were affected 

differently by a morbillivirus infection in the South of Spain, i.e. some had lower survival 

after the disease outbreak while it was not the case for others (Wierucka et al. 2014). As 

social structure and dynamics are strongly influenced by ecological conditions (see rationale 

in Chapter 1.2), their response to changes in environmental conditions might be rapid 

(Blumstein 2012). In addition, given the possible correlation between social associations and 

reproductive success or survival (e.g. Silk 2007; Frère et al. 2010a; Silk et al. 2010), these 

changes may impact fitness. Parsons et al. (2009) correlated a decline in social cohesion to a 

decline in abundance of resident killer whales and suggested that it might be a common 

response to external stressors. However, negative effects on a population may be undetected 

when working solely on abundance. For example, culling of wolves led to low levels of 

kinship within wolf packs because of the adoption of unrelated individuals. The normal kin 

structure was restored after the ban of the culling. However, the density did not change 

significantly, with human-induced mortality being replaced by natural mortality (Rutledge et 

al. 2010). Thus, I recommend a long-term monitoring of both demographic parameters and 

social organization for the Normano-Breton gulf bottlenose dolphin population. 

The Normano-Breton gulf population is genetically distinct from neighboring 

populations in the United Kingdom and Ireland as well as from individuals of Galicia (see 

Appendix A7.1). The Normano-Breton gulf is thus an important area for a large and 

genetically isolated population of bottlenose dolphins. Thus, I recommend the designation of 

a Special Area of Conservation for this population of bottlenose dolphins, as required under 

the EU Habitats Directive, where member states are required by law to protect these Annex II 

species at Favorable Conservation Status (FCS), and whose delineation should be determined 

by habitat use analyses. 

 

b) Conservation of bottlenose dolphins in the North-East Atlantic 

The main finding for conservation of bottlenose dolphins in the NEA is the delineation 

and characterization of the coastal and pelagic ecotypes, which is new for this area. Although 

they are not monophyletic for mitochondrial DNA and thus do not represent Evolutionary 

Significant Units (ESU) sensu Moritz (1994, 2002), they are sharply genetically and 

ecologically distinct, meeting the ecological and genetic definition of ESU of Crandall (2000). 
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They are likely on two distinct evolutionary trajectories and should be considered as two 

ESU. I recommend separating coastal and pelagic ecotypes in management plans. Threats are 

likely different in coastal and pelagic waters, which are affected by different types of human 

developments (noise pollution and habitat destruction in coastal waters vs noise pollution for 

seismic, oil and gas explorations in pelagic waters). Chemical pollution may be higher in 

coastal areas. Fishery bycatch may impact both ecotypes although dolphin bycatch issues may 

be more important in pelagic trawl and drift net fisheries than in smaller coastal fisheries (e.g. 

Morizur et al. 1999; López et al. 2003; Rogan & Mackey 2007). Threats may overlap in some 

areas such as in Portugal or Spain where the shelf edge is close to shore. Nevertheless, any 

impact studies measuring for example bycatch rates or pollutant levels should take the two 

ecotypes into account. Coastal Special Areas of Conservation are increasingly designated. Our 

genetic results indicating that the coastal populations are small, weakly diverse and relatively 

isolated, strengthen the need to protect their habitat. The designation of pelagic protected 

areas is complex given the likely high mobility of the animals in these areas (Game et al. 

2009) as well as the monitoring requirements that follow. Nonetheless, habitat modeling work 

is needed to identify important habitats for genetically distinct pelagic bottlenose dolphins and 

designated suitable protected areas.  

ASCOBANS (Agreement on the Conservation of Small Cetaceans of the Baltic and 

North Seas), which is a regional agreement on the protection of cetaceans recommended the 

designation of eighteen Management Units of bottlenose dolphins based on photo-

identification, genetics and large-scale boat and aerial surveys (Figure 7.1, ASCOBANS 

2013). 
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Figure 7.1. Bottlenose dolphin Management Units recommended by the 

ASCOBANS/OSPAR commission. 

 

This contrasts with the four genetic populations we have identified. Hence, designated 

management units based on genetic structure only may not be the most effective approach for 

conservation. I acknowledged in Chapter 5, that finer-scale genetic structure is expected. 

First, Bayesian clustering analyses may fail to detect low levels of genetic differentiation 

(Latch et al. 2006; Chen et al. 2007). Second, although we have a large sample size for this 

species, we do not have an exhaustive sampling of all resident communities and at least one of 

them may be genetically isolated (the Shannon population, Ireland, Mirimin et al. 2011). For 

some species such as bottlenose dolphins that show strong site fidelity and fine-scale genetic 

structure, unless an exhaustive sampling structure is achieved, management units cannot be 

determined based solely on genetic analyses. Long-term monitoring through photo-

identification complements genetic analyses, and could enable us to reveal demographic 

independence. Collaborative framework and photo-identification catalogue sharing is also 
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important to evaluate movements between putative resident and more mobile communities 

(e.g. in Ireland, and between Ireland and Scotland, O’Brien et al. 2009; Robinson et al. 2012). 

I support, as proposed by ASCOBANS, a multidisciplinary approach such as a combination of 

photo-identification work, ecological tracers and genetic analyses to designate Management 

Units of bottlenose dolphins.  

 

c) Management implications beyond bottlenose dolphins  

I do not want to discredit the relevance of genetic analyses for conservation. Genetic 

analyses are important to delineate populations, estimate connectivity, effective population 

sizes and genetic diversity, but it should be recognized that in some cases analyses based on 

neutral markers may fail to detect recent or weak population structure (e.g. Milano et al. 

2014). Genetic analyses are essential but they should be combined with ecological analyses 

revealing more recent structuring patterns. Such integrative approaches were successfully 

employed to designate conservation units for the imperiled salamander and identify the 

uniqueness of the Walia ibex (Gebremedhin et al. 2009; May et al. 2011). In these two 

studies, ecological data were represented by niche modeling. For highly mobile marine 

animals where it may be difficult to delineate habitats for distinct groups precisely, as detailed 

in section 7.3, ecological tracers such as stable isotopes, fatty acids or contaminants are 

efficient alternatives to estimate ecological structure (e.g. Herman et al. 2005; Rooker et al. 

2008a; Dickhut et al. 2009; Wilson et al. 2012). Whenever possible, a multi-tracers study 

should be preferred (Ramos & Gonzalez-Solis 2012). For instance, common dolphins in the 

NEA were identified as forming a single genetic population (Mirimin et al. 2009) while 

ecological tracers revealed significant population structure (Caurant et al. 2009). Given the 

high bycatch pressure for this species, the delineation of appropriate management units is 

essential for the viability of the species in the NEA (Mannocci et al. 2012). On-going genetic 

structure analyses using outlier loci (SNPs) showed fine-scale genetic structure, relatively 

coherent with the ecological tracer results (A. Viricel, personal communication). As detailed 

in section 7.3, population genomics, which allow detecting both neutral genetic structure and 

adaptive divergence could be a promising tool for conservation in the future, in particular 

when combined with ecological data (Funk et al. 2012).   
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In addition, analytical approaches that estimate both population genetics and 

demographic parameters are needed (Palsbøll et al. 2007). As detailed in the introduction, one 

important issue is to determine the level at which populations become demographically 

independent (Palsbøll et al. 2007). For instance, Olsen et al. (2014) used an interesting 

analytical framework to determine harbor seal management units. They used population 

viability analysis (PVA) to evaluate whether genetic clusters, inferred using Bayesian 

clustering methods, could be classified as management units based on the “population 

viability criterion for demographic independence” from Lowe and Allendorf (2010). Inference 

of management units based on this criterion using genetic data was highly concordant with 

results of non-genetic methods (habitat use with telemetry), revealing recent and fine-scale 

structuring patterns that are relevant for management. Although, their approach is appealing, 

especially as it does not rely on any threshold, it requires detailed life-history data and 

estimations of census sizes which are not always straightforward to collect in highly mobile or 

cryptic species. For small populations, individual identification through natural or artificial 

marks may reveal demographic independence but its applicability will be limited for large and 

difficult to access populations.  

To conclude, I support a multidisciplinary approach to delineate conservation units. 

There may be no general rule, and the conservation units may be defined case by case using 

approaches that are the most suitable for the species and area of interest. 

 

 

5) Perspectives 

 

My dissertation has contributed to fundamental and applied questions on the social and 

population structures of bottlenose dolphins in the North-East Atlantic. This work offers also 

several perspectives of studies. 

First, it would be relevant for conservation to estimate and compare the contaminant 

loads (e.g. organic pollutants and trace elements) of coastal and pelagic ecotypes. Bottlenose 

dolphins are on the top of the trophic chain and bio-accumulate contaminants which can have 
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immune-toxic and endocrine disruptive effects and may impact their reproductive success 

(e.g. Reijinders & Aguilar 2002; Schwacke et al. 2002; Schwacke et al. 2012). Particularly 

high levels of persistent organic pollutants have been found in bottlenose dolphins in 

comparison to other cetacean species in the Iberian Peninsula, although sample size was 

relatively low for this species (Méndez-Fernandez et al. 2014). I expect that contaminant 

levels will vary according to habitat use (e.g. Litz et al. 2007; Kucklick et al. 2011), with 

coastal individuals being more exposed to heavy contaminant loads than pelagic ones.  

Bottlenose dolphins are often considered as generalist and opportunist feeders 

according to stomach content analyses. However, it was suggested that individuals may have 

a degree of specializations (Wells & Scott 1999). This PhD study showed a large-scale level 

of ecological specializations between ecotypes and fine-scale variation in ecology between 

social clusters. This may suggest that this species is composed by populations or social groups 

of specialists. More generally, it was shown that niche width of a generalist population might 

be the sum of the niches of specialized individuals (Bolnick et al. 2003; Bolnick et al. 2007). 

However, with my data, I could not unravel the degree of stability of individual ecology. 

Dietary specializations at the individual level could be evaluated by analyzing stable isotopes 

in different dentin layers (e.g. in sperm whales, Mendes et al. 2007). It should however be 

noted that this work could only be performed on dead animals. 

The work carried out in this PhD could be extended to the whole North Atlantic (NA) 

or the whole Atlantic Basin. First, it is suggested that a large undifferentiated bottlenose 

dolphin population inhabits the NA. However, this hypothesis relies on mitochondrial DNA 

results only (Quérouil et al. 2007, Chapter 5). Pelagic samples of individuals of the North-

West Atlantic (NWA) could be genotyped for the same microsatellites used in our study to 

test for population structure. In addition, NEA coastal populations may have diverged more 

recently from the pelagic population than NWA coastal populations (see Chapter 6). 

Population demographic history analyses (using Approximate Bayesian Computation) could 

be performed on samples from both ecotypes on each side of the Atlantic Basin to estimate 

and compare the divergence times between ecotypes. In addition, ecological tracers and 

morphological analyses (on external traits but also on cranial skull features, in particular 

associated with feeding, Perrin et al. 2011) could be carried out. It would then be possible to 

test my hypotheses about evolutionary history and the differences in morphological 

differentiation between ecotypes in the NA. In addition, ecological modeling, however limited 
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by our knowledge on the range of both ecotypes, would be useful to quantify the contrasts 

between pelagic and coastal habitats from both sides of the Atlantic as I suggested they may 

be key factors shaping the opportunity to specialize and diverge. Niche modeling is indeed 

increasingly included in evolutionary studies of terrestrial species to compare the ecological 

niches of genetically distinct populations (e.g. Gebremedhin et al. 2009; May et al. 2011) or 

to contribute to our understanding of evolutionary scenarios (e.g. Rey et al. 2012).  

This study would also greatly benefit from a genomic approach. I propose to sequence 

the whole mitogenome and screen thousands of loci on the whole genome such as Single 

Nucleotide Polymorphisms using Next-Generation-Sequencing (reviewed in Davey et al. 

2011). The inclusion of these large genomic datasets could improve the power of 

Approximate Bayesian Computation to identify the most likely demographic scenario. The 

power of the analyses was relatively limited with our dataset when comparing the most 

complex scenarios including founder effects (see Chapter 6). Moreover, the results suggest an 

important influence of environmental factors on genetic divergence. Using a genomic 

approach, it could be possible to detect loci under selection among the thousands of identified 

loci between populations. Patterns of parallel evolution and local adaptation have been 

investigated using these approaches in several species (Hohenlohe et al. 2010; Stapley et al. 

2010; Savolainen et al. 2013). For bottlenose dolphins, it would be interesting to test for 

adaptation and possible parallel evolution in coastal and pelagic waters worldwide using a 

combination of genomics, ecological and morphological analyses. It could be particularly 

interesting to include other bottlenose dolphin populations outside the Atlantic, for example 

include North-East Pacific samples where ecotypes have been identified (Segura et al. 2006; 

Perrin et al. 2011) and areas where there might be no ecotype differentiation as suggested for 

New Zealand (Tezanos-Pinto 2009; Tezanos-Pinto et al. 2009). Mapping of loci under 

selection and identification of possible genes involved may be facilitated by the availability of 

the whole genome of Tursiops truncatus (Lindblad-Toh et al. 2011). In addition, bottlenose 

dolphins in the NEA and NWA may be at different stages of reproductive isolation. This may 

be the case in other parts of the world, making bottlenose dolphins interesting models to test 

the influence of ecology on speciation using genome scans together with ecological and 

phenotypic data (as suggested in Faria et al. 2014). 
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1) Appendix Chapter 4 

Appendix A4.1. PCR and genotyping conditions for each microsatellite locus.  

Samples were genotyped at 27 microsatellite loci including 21 published markers: 

EV37 (Valsecchi & Amos 1996), KMW12a (Hoelzel et al. 1998), MK5, MK6, MK8, MK9 

(Krützen et al. 2001), TexVet 5, TexVet 7 (Rooney et al. 1999), Ttr04, Ttr11, Ttr34, Ttr48, 

Ttr58, Ttr63, TtrFF6, TtRH1 (Rosel et al. 2005), Tur4_87, Tur4_98, Tur4_128 and Tur4_142 

(Nater et al. 2009) and 6 markers newly developed during this study: Tut01, Tut02, Tut05, 

Tut08, Tut09 and Tut10 (see methodology in Appendix A4.2; GENBANK accession numbers 

are respectively KF887998 to KF888002 for Tut01 to Tut09; all markers are detailed in the 

below table). Two markers (TtrRH1 and Tut10) were excluded from the analyses because of 

amplification issues (null alleles or stuttering). Genotyping was performed on a LICOR 4300 

DNA analyzer (Sciencetec) for 18 loci and on a 3730XL ABI DNA sequencer (Applied 

Biosystems) for 7 loci. All the individuals were screened for a particular locus using the same 

analyzer. For loci analyzed on the LICOR 4300 sequencer, each 10 µL PCR reaction 

contained 1 µl of extracted DNA, 1X reaction Buffer, 0.25 mM dNTPs, 1.5 mM MgCl2 and 

0.3 units Taq polymerase apart for Tur4_87, Tur4_98, Tur4_128 and Tur4_142, where the 

concentrations were 0.125 mM dTNPs, 2.5 mM MgCl2 and 0.5 units Taq polymerase. Primer 

concentrations are indicated in the below table. Cycle conditions were as follows: 94 °C for 3 

min, followed by 35 cycles of 94 °C for 30 s, annealing temperature for 30 s (see below 

table), and 72 °C for 45 s, followed by a final 72 °C extension for 7 min. Amplified products 

were screened on 6% polyacrylamide gels. Allele sizes were determined by eye using a size 

standard and alleles from reference samples. For the 7 loci analyzed on the 3730 XL ABI 

sequencer, amplification and electrophoresis were performed by Genoscreen (Lille, France) 

with conditions modified from Vollmer (2011). Each 25 µL PCR reaction contained 1 µl of 

extracted DNA, 1X reaction buffer, 0.24 mM dNTPs, 1.5 mM MgCl2 and 1 unit Taq 

polymerase. Primer concentrations are indicated in the below table.  Cycle conditions were as 

follows: 95 °C for 10 min, followed by 40 cycles of 95 °C for 30 s, 55 °C for 30 s and 72 °C 

for 1 min, followed by a final 72 °C extension for 10 min. A LIZ500 size standard was used 

and allele sizes were scored by eye using Peakscanner (Applied Biosystems). A binning 

procedure as described in Rosel et al. (2009) was performed in order to ensure consistency of 

the scorings. 
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Table with the characteristics of each microsatellite locus. Loci screened on the LICOR 4300 DNA analyzer were only co-loaded for genotyping 

(Multiplex sequencer). Loci screened on a 3730XL ABI DNA sequencer were multiplexed for PCR (Multiplex PCR) and co-loaded for 

genotyping (Multiplex sequencer).  

 

Markers Reference primers 5' - 3' (R and F) Motif allele 

size 

ranges 

method primer  

[C] 

(all or 

R/F/F* 

or 

R/F*) 

in µM 

Annealing 

T° in °C 

Multiplex 

PCR 

Multiplex 

sequencer 

Comments 

EV37 

Valsecchi 

& Amos 

1996 - 

Vollmer 

2011 

AGCTTGATTTGGAAGTCATGA 

GTTTTAGTAGAGCCGTGATAAAGTGC  
(AC)24 

196- 

250 
ABI 0.24 55 c 2 

Dye = 6FAM 

dilution 1/25 

KMW12a 

Hoelzel et 

al. 1998 - 

Bourret et 

al. 2008 

CCATACAATCCAGCAGTC 

CACTGCAGAATGATGACC 
(CA)n 

144-

168 
LICOR 

0.125/

0.075/

0.05 

46 - 8  

MK5 

Krützen et 

al. 2001 -  

Vollmer 

2011 

CTCAGAGGGAAATGAGGCTG  

GTTTTGTCTAGAGGTCAAAGCCTTCC 

(TG)13CT(TG)2

CA(TG)2(TA)2

(TG)4 

205-

243 
ABI 0.2  55 b 1 

Dye = VIC 

dilution 1/20 

MK6 

Krützen et 

al. 2001 -  

Vollmer 

2011 

GTCCTCTTTCCAGGTGTAGCC 

GCCCACTAAGTATGTTGCAGC 
(GT)17 

145-

191 
ABI 0.2 55 a 1 

Dye = NED 

dilution 1/10 

MK8 

Krützen et 

al. 2001 -  

Vollmer 

2011 

TCCTGGAGCATCTTATAGTGGC 

GTTTCTCTTTGACATGCCCTCACC 
(CA)23 87-117 ABI 0.2 55 a 1 

Dye = 6FAM 

dilution 1/10 
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MK9 

Krützen et 

al. 2001 -  

Vollmer 

2011 

CATAACAAAGTGGGATGACTCC 

GTTTTTATCCTGTTGGCTGCAGTG 
(CA)17 

166-

182 
ABI 0.4 55 a 1 

Dye = 6FAM 

dilution 1/10 

Tur4_87 
Nater et 

al. 2009 

CCCCATATGATGCCTTTGTAAGTCC 

AATTCCTTGTAACAAACCTCTTTATCT 
(GATA)8 

182-

202 
LICOR 

0.225/

0.225 
61 - 9  

Tur4_98 
Nater et 

al. 2009 

GTCCCCAGAACTTAGCACACTGTC 

CAACTGGGGTCCAAAGAAAGAAG 
(GATG)10 

172-

204 
LICOR 

0.225/

0.225 
63 - 10  

Tur4_128 
Nater et 

al. 2009 

ACGTGCGCATGTCTTTGTCTTAT  

CTTTGGACGGGGAGTAGAACCTA 
(GATA)11 

280-

304 
LICOR 

0.225/

0.225 
62 - 9  

Tur4_142 
Nater et 

al. 2009 

 GGCCCCCTTTTCCATCCTCA   

CCAGCCCCCAAAATCACGAGT 
(GATA)9 

320-

340 
LICOR 

0.225/

0.225 
61 - 10  

TexVet5 

Rooney et 

al. 1999 - 

Vollmer 

2011 

GATTGTGCAAATGGAGACA 

GTTTTTGAGATGACTCCTGTGGG 
(CA)24 

201-

223 
ABI 

0.125/

0.075/

0.05 

55 c 2 
Dye = VIC 

dilution 1/25 

TexVet7 

Rooney et 

al. 1999 - 

Vollmer 

2011 

TGCACTGTAGGGTGTTCAGCAG 

CTTAATTGGGGGCGATTTCAC 
(CA)12 

162-

178 
ABI 0.2 55 b 1 

Dye = PET 

dilution 1/20 

Ttr04 
Rosel et 

al. 2005 

CTGACCAGGCACTTTCCAC  

GTTTGTTTCCCAGGATTTTAGTGC 
(CA)25 

106-

128 
LICOR 

0.125/

0.075/

0.05 

60 - 4  

Ttr11 
Rosel et 

al. 2005 

CTTTCAACCTGGCCTTTCTG  

GTTTGGCCACTACAAGGGAGTGAA 
(CA)21 

194-

226 
LICOR 

0.125/

0.075/

0.05 

62 - 8  

Ttr19 
Rosel et 

al. 2005 

TGGGTGGACCTCATCAAATC  

GTTTAAGGGCTGTAAGAGG 
(CA)17 

174-

202 
LICOR 

0.125/

0.075/

0.05 

60 - 5  

Ttr34 
Rosel et 

al. 2005 

GCACATGAGTATGTGGACAGG  

GTTTCCTCCTTGGGAGTGTCCTCT 
(CA)19 

182-

204 
LICOR 

0.125/

0.075/

0.05 

58 - -  

Ttr48 
Rosel et 

al. 2005 

AAGAGGATGCAAATGGCAAG  

GTTTGGTAAGAAAATACCAAAGTCC 
(CA)18 

132-

144 
LICOR 

0.125/

0.075/

0.05 

58 - 6  
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Ttr58 
Rosel et 

al. 2005 

TGGGTCTTGAGGGGTCTG  

GTTTGCTGAGGCTCCTTGTTGG 
(CA)17 

168-

196 
LICOR 

0.125/

0.075/

0.05 

60 - 4  

Ttr63 
Rosel et 

al. 2005 

CAGCTTACAGCCAAATGAGAG  

GTTTCTCCATGGCTGAGTCATCA 
(CA)34 86-140 LICOR 

0.125/

0.075/

0.05 

60 - 4  

TtrFF6 
Rosel et 

al. 2005 

AAGTAAGTGCTCCTTTGACTGG  

GTTTGGCAGAGAGATATTAGGACAGC 
(CA)20 

134-

174 
LICOR 

0.125/

0.075/

0.05 

54 - 7  

Tut01 
current 

study 

CTGTTGTTGCCTCAATTTGC 

CCCATAGGACATATCCCACA 
(TG)11 

117-

125 
LICOR 

0.125/

0.075/

0.05 

56 - 5  

Tut02 
current 

study 

CATTTGTTGGGAAGCTGTTG 

AGTGGGTTGACACATTCCCT 
(AC)11 

181-

209 
LICOR 

0.125/

0.075/

0.05 

56 - 3  

Tut05 
current 

study 

GTATGCCTTGCTTTTGGTGC 

TGGGAGGTATGTCTGCAATAA 
(AC)13 

154-

166 
LICOR 

0.125/

0.075/

0.05 

56 - 7  

Tut08 
current 

study 

AAGTTCCTAATTTCCCACCCA 

ACTTGTGTTTGCCTGCCTGT 
(AC)15 

149-

175 
LICOR 

0.125/

0.075/

0.05 

56 - 3  

Tut09 
current 

study 

TAGGCTGGCAGAACACAAAG 

TGATTGTTTTCCTTCCTCGTG 
(AC)15 

149-

167 
LICOR 

0.125/

0.075/

0.05 

56 - 6  

 

Notes: [C] = concentration and * indicated that the primer is marked. 
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Appendix A4.2. New microsatellite discovery method. 

Total genomic DNA was isolated from 13 individuals randomly selected between 

Scotland and the Mediterranean Sea using NucleoSpin Tissue kits (Macherey-Nagel) 

following the manufacturer’s protocol and sent to GenoScreen, France 

(www.genoscreen.com). A total of 1 μg was used for the development of microsatellite 

library through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries, as 

described in Malausa et al. (2011). Briefly, total DNA was enriched for AG, AC, AAC, AAG, 

AGG, ACG, ACAT, and ATCT repeat motifs and subsequently amplified. PCR products 

were purified, quantified, and GsFLX libraries were then constructed following 

manufacturer’s protocols (Roche Diagnostics) and sequenced on a GsFLX-PTP. The 

bioinformatics program QDD (Meglécz et al. 2010) was used to filter for redundancy, 

resulting in a final set of sequences from which it was able to design primers. Finally, among 

4660 sequences comprising a microsatellites motif, 194 primer sets were designed. We tested 

13 primer sets on a LICOR 4300 sequencer and optimized the PCR and genotyping conditions 

for 6 primer sets (see Appendix A4.1). 
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Appendix A4.3. Microsatellite loci and their characteristics for bottlenose dolphins in 

the Normano-Breton gulf. The number of allele (NA) and allele richness (AR) were 

calculated in FSTAT 2.9.3. (Goudet 1995). Observed heterozygosity (Ho) and expected 

heterozygosity (He) were calculated in Arlequin (Michalakis & Excoffier 1996). FIS and 

significance levels were estimated in Genepop on the web version 4.2 (Raymond & Rousset 

1995; Rousset 2008). 

Locus NA AR Ho He FIS W&C FIS P-values 

Tut08 8  7.977 0.85227 0.80481 -0.0593 0.5865 

Tut02 8  8.000 0.78409 0.79481 0.0136 0.4371 

Ttr34 6  6.000 0.82022 0.77649 -0.0567 0.7401 

Ttr58 5  4.966 0.64045 0.64305 0.0041 0.6758 

Ttr04 5  5.000 0.64773 0.66909 0.0321 0.4033 

Ttr63 9  8.999 0.75281 0.73592 -0.0231 0.8455 

Tut01 3  2.999 0.33708 0.35523 0.0514 0.7184 

Ttr19 4  4.000 0.43182 0.39643 -0.0898 0.4822 

Tut05 2  2.000 0.43820 0.41116 -0.0662 0.6098 

TtrFF6 6  6.000 0.66292 0.71542 0.0738 0.7613 

Tut09 5  4.999 0.34831 0.36990 0.0587 0.73 

KMW12a 3  3.000 0.38202 0.43344 0.1192 0.4331 

TA67 3  3.000 0.47727 0.52331 0.0884 0.436 

TA74 4  4.000 0.60674 0.56948 -0.0658 0.9884 

TA69 4  4.000 0.67416 0.66749 -0.01 0.5704 

TA78 4  3.965 0.24719 0.27150 0.09 0.6135 

Ttr11 6  5.999 0.51136 0.55117 0.0726 0.5676 

Ttr48 7  6.966 0.70787 0.71726 0.0132 0.477 

EV37 16 16.000 0.90698 0.89263 -0.0162 0.8053 

MK5 6  6.000 0.78409 0.76435 -0.026 0.4153 

MK6 6  6.000 0.76404 0.66305 -0.1533 0.3187 

MK8 4  4.000 0.74157 0.74881 0.0097 0.9942 

MK9 4  3.966 0.25843 0.24180 -0.0692 0.0685 

TexVet5 5  5.000 0.63218 0.62461 -0.0122 0.6371 

TexVet7 4  3.999 0.44944 0.44214 -0.0166 0.4095 

Mean 5.480 5.467 0.59437  0.59133 -0.001504 0.5890 

SD 2.786 3.292 0.19267  0.18181 0.0652 
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Appendix A4.4. PCR conditions for the amplification of a portion (682-bp) of the 

mitochondrial control region. 

Each 25 µL PCR reaction contained 5 µL of extracted DNA, 1X reaction Buffer, 0.25 

mM dNTPs, 2mM MgCl2, 0.125 µM of each primer and 0.5 units Taq polymerase. Cycle 

conditions were as follows: 94 °C for 3 min followed by 39 cycles of 94 °C for 30 s, 51 °C for 

30 s, 72 °C for 45 s, followed by a final 72 °C extension for 7 min. PCR products were sent to 

Genoscreen (Lille, France) for purification and sanger sequencing for both strands on an 

3730XL ABI sequencer. 

 

 

 

 

Appendix A4.5. Selection of the optimal number of clusters for the DAPC 

analysis using the BIC (Bayesian Information Criterion). 
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Appendix A4.6. Membership proportions of individual bottlenose dolphins 

inferred for K = 2 using a) TESS, b) STRUCTURE with all the dataset and c) 

STRUCTURE with the dataset where one individual per pair of closely related 

individuals was removed.  

Each vertical column corresponds to one individual, with the colors representing the 

membership proportions to each of the two clusters. The three barplots indicate that K = 1. 
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Appendix A4.7. STRUCTURE plots of the log probability of the data [LnP(D)] 

given values for K of 1 to 10 for the analyses with admixture and correlated allele 

frequencies for a) all the dataset and b) the dataset where one individual per pair of 

closely related individuals was removed. 

 

 

 

 

Appendix A4.8a. δ
34

S signature (‰) variations according to season for individuals 

included in social structure analyses (N = 54).  

a) b) 
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Appendix A4.8b. δ
13

C signature (‰) variations according to season for 

individuals included in social structure analyses (N = 54). 

 

 

Appendix A4.8c. δ
15

N signature (‰) variations according to season for 

individuals included in social structure analyses (N = 54). 
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Appendix A4.9a. δ
15

N and δ
13

C signatures for each social group of bottlenose dolphins. 

Solid lines indicate Standard Ellipses Areas corrected for small sample sizes (SEAc). 

Area values (‰²) are given in the legend. 

 

 

Appendix A4.9b. δ
13

C and δ
34

S signatures for each social group of bottlenose dolphins. 

Solid lines indicate Standard Ellipses Areas corrected for small sample sizes (SEAc). 

Area values (‰²) are given in the legend.  
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2) Appendix Chapter 5 

 

Appendix A5.1. Map of stranding locations (left) for individuals for which we applied a 

drift prediction model and map of their most likely area of death (right). 
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Appendix A5.2. List of haplotypes obtained from GENBANK and used for the North Atlantic basin mtDNA haplotype network. It 

includes information on accession numbers (GENBANK), sampling locations (Origin with NWA = North-West Atlantic) and the articles where 

these sequences were reported and/or analyzed (Sellas et al. 2005; Quérouil et al. 2007; Kingston et al. 2009; Rosel et al. 2009; Vollmer 2011; 

Litz et al. 2012). 

 

Name Type GENBANK Origin Article 1 Article 2 Article 3 

OTtr10 haplotype GQ504053 NWA Kingston et al. 2009 Rosel et al. 2009  

OTtr11 haplotype GQ504074 NWA Kingston et al. 2009 Vollmer 2011  

OTtr12 haplotype GQ504054 NWA Kingston et al. 2009 Rosel et al. 2009 Vollmer 2011 

OTtr13 haplotype GQ504075 NWA Kingston et al. 2009   

OTtr14 haplotype GQ504076 NWA Kingston et al. 2009   

OTtr15 haplotype GQ504077 NWA Kingston et al. 2009 Vollmer 2011  

OTtr16 haplotype GQ504078 NWA Kingston et al. 2009   

OTtr17 haplotype GQ504079 NWA Kingston et al. 2009   

OTtr18 haplotype GQ504080 NWA Kingston et al. 2009   

OTtr19 haplotype GQ504083 NWA Kingston et al. 2009   

OTtr2 haplotype GQ504065 NWA Kingston et al. 2009 Vollmer 2011  

OTtr20 haplotype GQ504084 NWA Kingston et al. 2009   

OTtr21 haplotype GQ504085 NWA Kingston et al. 2009 Vollmer 2011  

OTtr22 haplotype GQ504086 NWA Kingston et al. 2009   

OTtr23 haplotype GQ504087 NWA Kingston et al. 2009 Vollmer 2011  

OTtr24 haplotype GQ504088 NWA Kingston et al. 2009 Vollmer 2011  

OTtr25 haplotype GQ504092 NWA Kingston et al. 2009   

OTtr26 haplotype GQ504089 NWA Kingston et al. 2009   

OTtr27 haplotype GQ504091 NWA Kingston et al. 2009   

OTtr28 haplotype GQ504055 NWA Kingston et al. 2009 Rosel et al. 2009  
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OTtr29 haplotype GQ504094 NWA Kingston et al. 2009   

OTtr3 haplotype GQ504067 NWA Kingston et al. 2009 Vollmer 2011  

OTtr30 haplotype GQ504096 NWA Kingston et al. 2009 Vollmer 2011  

OTtr31 haplotype GQ504097 NWA Kingston et al. 2009   

OTtr32 haplotype GQ504098 NWA Kingston et al. 2009 Vollmer 2011  

OTtr34 haplotype GQ504066 NWA Kingston et al. 2009   

OTtr35 haplotype GQ504081 NWA Kingston et al. 2009   

OTtr36 haplotype GQ504082 NWA Kingston et al. 2009   

OTtr37 haplotype GQ504090 NWA Kingston et al. 2009 Vollmer 2011  

OTtr38 haplotype GQ504093 NWA Kingston et al. 2009   

OTtr39 haplotype GQ504095 NWA Kingston et al. 2009   

OTtr4 haplotype GQ504068 NWA Kingston et al. 2009 Vollmer 2011  

OTtr40 haplotype GQ504099 NWA Kingston et al. 2009   

OTtr41 haplotype GQ504106 NWA Kingston et al. 2009 Vollmer 2011  

OTtr42 haplotype GQ504111 NWA Kingston et al. 2009   

OTtr43 haplotype GQ504112 NWA Kingston et al. 2009   

OTtr44 haplotype GQ504056 NWA Kingston et al. 2009 Rosel et al. 2009  

OTtr45 haplotype GQ504104 NWA Kingston et al. 2009   

OTtr46 haplotype GQ504105 NWA Kingston et al. 2009   

OTtr47 haplotype GQ504113 NWA Kingston et al. 2009   

OTtr48 haplotype GQ504057 NWA Kingston et al. 2009 Rosel et al. 2009  

OTtr49 haplotype HQ383685 Gulf of Mexico Litz et al. 2012   

OTtr5 haplotype GQ504069 NWA Kingston et al. 2009   

OTtr6 haplotype GQ504070 NWA Kingston et al. 2009   

OTtr69 haplotype HQ383684 NWA Litz et al. 2012   

OTtr7 haplotype GQ504071 NWA Kingston et al. 2009 Vollmer 2011  

OTtr8 haplotype GQ504072 NWA Kingston et al. 2009   

OTtr9 haplotype GQ504073 NWA Kingston et al. 2009 Vollmer 2011  

Ttr09 haplotype DQ845450 NWA Kingston et al. 2009   
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Ttr1 haplotype GQ504040 NWA Kingston et al. 2009 Rosel et al. 2009 Vollmer 2011 

Ttr11 haplotype GQ504046 NWA Kingston et al. 2009 Rosel et al. 2009  

Ttr12 haplotype GQ504047 NWA Kingston et al. 2009 Rosel et al. 2009  

Ttr13 haplotype GQ504048 NWA Kingston et al. 2009 Rosel et al. 2009  

Ttr15 haplotype GQ504049 NWA Kingston et al. 2009 Rosel et al. 2009 Vollmer 2011 

Ttr16 haplotype AY997309 GOM Sellas et al. 2005 Vollmer 2011  

Ttr2 haplotype AY997308 GOM Sellas et al. 2005 Vollmer 2011  

Ttr28 haplotype GQ504059 NWA Kingston et al. 2009   

Ttr29 haplotype GQ504052 NWA Kingston et al. 2009 Rosel et al. 2009  

Ttr3 haplotype GQ504041 NWA Kingston et al. 2009 Rosel et al. 2009  

Ttr31 haplotype GQ504100 NWA Kingston et al. 2009   

Ttr32 haplotype GQ504101 NWA Kingston et al. 2009 Litz et al. 2012  

Ttr37 haplotype GQ504109 NWA Kingston et al. 2009   

Ttr38 haplotype GQ504110 NWA Kingston et al. 2009   

Ttr39 haplotype GQ504102 NWA Kingston et al. 2009   

Ttr4 haplotype GQ504042 NWA Kingston et al. 2009 Rosel et al. 2009 Vollmer 2011 

Ttr40 haplotype GQ504103 NWA Kingston et al. 2009 Litz et al. 2012  

Ttr41 haplotype HQ383686 Gulf of Mexico Litz et al. 2012   

Ttr5 haplotype GQ504043 NWA Kingston et al. 2009 Rosel et al. 2009  

Ttr6 haplotype GQ504044 NWA Kingston et al. 2009 Rosel et al. 2009  

Ttr7 haplotype GQ504045 NWA Kingston et al. 2009 Rosel et al. 2009  

Ttr8 haplotype GQ504058 NWA Kingston et al. 2009   

TT087 voucher DQ525362 Azores Quérouil et al. 2007   

TT086 voucher DQ525361 Azores Quérouil et al. 2007   

TT085 voucher DQ525360 Azores Quérouil et al. 2007   

TT084 voucher DQ525359 Azores Quérouil et al. 2007   

TT083 voucher DQ525358 Azores Quérouil et al. 2007   

TT071 voucher DQ525357 Azores Quérouil et al. 2007   

TT080 voucher DQ073717 Azores Quérouil et al. 2007   



Appendix 

 

 

229 

 

TT079 voucher DQ073716 Azores Quérouil et al. 2007   

TT078 voucher DQ073715 Azores Quérouil et al. 2007   

TT077 voucher DQ073714 Azores Quérouil et al. 2007   

TT076 voucher DQ073713 Azores Quérouil et al. 2007   

TT075 voucher DQ073712 Azores Quérouil et al. 2007   

TT074 voucher DQ073711 Azores Quérouil et al. 2007   

TT073 voucher DQ073710 Azores Quérouil et al. 2007   

TT072 voucher DQ073709 Azores Quérouil et al. 2007   

TT070 voucher DQ073708 Azores Quérouil et al. 2007   

TT069 voucher DQ073707 Azores Quérouil et al. 2007   

TT067 voucher DQ073706 Azores Quérouil et al. 2007   

TT066 voucher DQ073705 Azores Quérouil et al. 2007   

TT065 voucher DQ073704 Azores Quérouil et al. 2007   

TT064 voucher DQ073703 Azores Quérouil et al. 2007   

TT063 voucher DQ073702 Azores Quérouil et al. 2007   

TT061 voucher DQ073701 Azores Quérouil et al. 2007   

TT060 voucher DQ073700 Azores Quérouil et al. 2007   

TT059 voucher DQ073699 Azores Quérouil et al. 2007   

TT058 voucher DQ073698 Azores Quérouil et al. 2007   

TT057 voucher DQ073697 Azores Quérouil et al. 2007   

TT056 voucher DQ073696 Azores Quérouil et al. 2007   

TT055 voucher DQ073695 Azores Quérouil et al. 2007   

TT054 voucher DQ073694 Azores Quérouil et al. 2007   

TT053 voucher DQ073693 Azores Quérouil et al. 2007   

TT052 voucher DQ073692 Azores Quérouil et al. 2007   

TT051 voucher DQ073691 Azores Quérouil et al. 2007   

TT050 voucher DQ073690 Azores Quérouil et al. 2007   

TT049 voucher DQ073689 Azores Quérouil et al. 2007   

TT048 voucher DQ073688 Azores Quérouil et al. 2007   
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TT047 voucher DQ073687 Azores Quérouil et al. 2007   

TT046 voucher DQ073686 Azores Quérouil et al. 2007   

TT045 voucher DQ073685 Azores Quérouil et al. 2007   

TT044 voucher DQ073684 Azores Quérouil et al. 2007   

TT043 voucher DQ073683 Azores Quérouil et al. 2007   

TT042 voucher DQ073682 Azores Quérouil et al. 2007   

TT041 voucher DQ073681 Azores Quérouil et al. 2007   

TT040 voucher DQ073680 Azores Quérouil et al. 2007   

TT039 voucher DQ073679 Azores Quérouil et al. 2007   

TT038 voucher DQ073678 Azores Quérouil et al. 2007   

TT037 voucher DQ073677 Azores Quérouil et al. 2007   

TT036 voucher DQ073676 Azores Quérouil et al. 2007   

TT035 voucher DQ073675 Azores Quérouil et al. 2007   

TT034 voucher DQ073674 Azores Quérouil et al. 2007   

TT033 voucher DQ073673 Azores Quérouil et al. 2007   

TT032 voucher DQ073672 Azores Quérouil et al. 2007   

TT031 voucher DQ073671 Azores Quérouil et al. 2007   

TT030 voucher DQ073670 Azores Quérouil et al. 2007   

TT029 voucher DQ073669 Azores Quérouil et al. 2007   

TT028 voucher DQ073668 Azores Quérouil et al. 2007   

TT027 voucher DQ073667 Azores Quérouil et al. 2007   

TT026 voucher DQ073666 Azores Quérouil et al. 2007   

TT025 voucher DQ073665 Azores Quérouil et al. 2007   

TT024 voucher DQ073664 Azores Quérouil et al. 2007   

TT023 voucher DQ073663 Azores Quérouil et al. 2007   

TT022 voucher DQ073662 Azores Quérouil et al. 2007   

TT021 voucher DQ073661 Azores Quérouil et al. 2007   

TT020 voucher DQ073660 Azores Quérouil et al. 2007   

TT019 voucher DQ073659 Azores Quérouil et al. 2007   
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TT018 voucher DQ073658 Azores Quérouil et al. 2007   

TT017 voucher DQ073657 Azores Quérouil et al. 2007   

TT016 voucher DQ073656 Azores Quérouil et al. 2007   

TT015 voucher DQ073655 Azores Quérouil et al. 2007   

TT014 voucher DQ073654 Azores Quérouil et al. 2007   

TT013 voucher DQ073653 Azores Quérouil et al. 2007   

TT012 voucher DQ073652 Azores Quérouil et al. 2007   

TT011 voucher DQ073651 Azores Quérouil et al. 2007   

TT010 voucher DQ073650 Azores Quérouil et al. 2007   

TT009 voucher DQ073649 Azores Quérouil et al. 2007   

TT008 voucher DQ073648 Azores Quérouil et al. 2007   

TT007 voucher DQ073647 Azores Quérouil et al. 2007   

TT006 voucher DQ073646 Azores Quérouil et al. 2007   

TT005 voucher DQ073645 Azores Quérouil et al. 2007   

TT004 voucher DQ073644 Azores Quérouil et al. 2007   

TT003 voucher DQ073643 Azores Quérouil et al. 2007   

TT002 voucher DQ073642 Azores Quérouil et al. 2007   

TT001 voucher DQ073641 Azores Quérouil et al. 2007   

TT0106 voucher FJ768019 Azores Quérouil et al. 2007   

TT0105 voucher FJ768018 Azores Quérouil et al. 2007   

TT0104 voucher FJ768017 Azores Quérouil et al. 2007   

TT0103 voucher FJ768016 Azores Quérouil et al. 2007   

TT0102 voucher FJ768015 Azores Quérouil et al. 2007   

TT0101 voucher FJ768014 Azores Quérouil et al. 2007   

TT0100 voucher FJ768013 Azores Quérouil et al. 2007   

TT099 voucher FJ768012 Azores Quérouil et al. 2007   

TT098 voucher FJ768011 Azores Quérouil et al. 2007   

TT097 voucher FJ768010 Azores Quérouil et al. 2007   

TT096 voucher FJ768009 Azores Quérouil et al. 2007   
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TT095 voucher FJ768008 Azores Quérouil et al. 2007   

TT094 voucher FJ768007 Azores Quérouil et al. 2007   

TT093 voucher FJ768006 Azores Quérouil et al. 2007   

TT092 voucher FJ768005 Azores Quérouil et al. 2007   

TT091 voucher FJ768004 Azores Quérouil et al. 2007   

TT090 voucher FJ768003 Azores Quérouil et al. 2007   

TT089 voucher FJ768002 Azores Quérouil et al. 2007   

TT088 voucher FJ768001 Azores Quérouil et al. 2007   

TTM030 voucher DQ525388 Madeira Quérouil et al. 2007   

TTM029 voucher DQ525387 Madeira Quérouil et al. 2007   

TTM028 voucher DQ525386 Madeira Quérouil et al. 2007   

TTM027 voucher DQ525385 Madeira Quérouil et al. 2007   

TTM025 voucher DQ525383 Madeira Quérouil et al. 2007   

TTM026 voucher DQ525384 Madeira Quérouil et al. 2007   

TTM023 voucher DQ525382 Madeira Quérouil et al. 2007   

TTM022 voucher DQ525381 Madeira Quérouil et al. 2007   

TTM019 voucher DQ525379 Madeira Quérouil et al. 2007   

TTM016 voucher DQ525378 Madeira Quérouil et al. 2007   

TTM015 voucher DQ525377 Madeira Quérouil et al. 2007   

TTM014 voucher DQ525376 Madeira Quérouil et al. 2007   

TTM013 voucher DQ525375 Madeira Quérouil et al. 2007   

TTM012 voucher DQ525374 Madeira Quérouil et al. 2007   

TTM010 voucher DQ525373 Madeira Quérouil et al. 2007   

TTM009 voucher DQ525372 Madeira Quérouil et al. 2007   

TTM008 voucher DQ525371 Madeira Quérouil et al. 2007   

TTM007 voucher DQ525370 Madeira Quérouil et al. 2007   

TTM006 voucher DQ525369 Madeira Quérouil et al. 2007   

TTM005 voucher DQ525368 Madeira Quérouil et al. 2007   

TTM004 voucher DQ525367 Madeira Quérouil et al. 2007   



Appendix 

 

 

233 

 

TTM003 voucher DQ525366 Madeira Quérouil et al. 2007   

TTM002 voucher DQ525365 Madeira Quérouil et al. 2007   

TTM001 voucher DQ525364 Madeira Quérouil et al. 2007   
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Appendix A5.3. BayesAss settings. 

As recommended by Rannala (2013) preliminary runs were first performed to adjust 

the Markov Chain Monte Carlo (MCMC) mixing parameters of migrations rates, allele 

frequencies and inbreeding coefficients to ensure proposal acceptance rates around 30%. We 

then performed 10 runs with a burnin of 1 x 10
6
 iterations followed by 2 x 10

7
 MCMC 

iterations and a sampling frequency of 1000. Trace files were plotted using Tracer (Rambaut 

& Drummond 2007) to check for convergence and mixing. Consistency of the results between 

the runs was also checked. 
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Appendix A5.4. Test for Hardy-Weinberg Equilibrium (HWE) deviation of each locus in each population and in the whole data set (P-

values that are significant after sequential Bonferroni correction are highlighted in boldface). Inbreeding coefficient (FIS W&C), 

Observed Heterozygosity (Ho), Expected Heterozygosity (He), Number of alleles (NA), Allele Richness (AR) and number of private 

alleles (PA) were also calculated for each locus in each population, and in the whole dataset when appropriate. 

 

Population Locus HWE FIS W&C Ho He NA AR PA 

Coastal_South Tut08 0.1985 0.0199 0.79130 0.80733 7 6.887  

Coastal_South Tut02 0.1186 0.0381 0.76724 0.79747 9 8.446  

Coastal_South Ttr34 0.5937 -0.0107 0.76724 0.75918 6 5.996  

Coastal_South Ttr58 0.3785 0.0110 0.64407 0.65117 7 5.770 1 

Coastal_South Ttr04 0.7307 0.0386 0.66667 0.69333 7 6.050  

Coastal_South Ttr63 0.0962 0.0055 0.74576 0.74984 10 9.714  

Coastal_South Tut01 0.5553 0.0565 0.30252 0.32057 3 2.875  

Coastal_South Ttr19 0.3767 0.0153 0.41379 0.42021 5 4.733  

Coastal_South Tut05 0.6541 -0.0474 0.42373 0.40462 2 2.000  

Coastal_South TtrFF6 0.4616 0.0690 0.64407 0.69163 6 5.837  

Coastal_South Tut09 0.4878 0.1129 0.40678 0.45831 5 4.860  

Coastal_South KMW12a 0.2246 0.1614 0.35294 0.42056 5 3.805  

Coastal_South TA67 0.4042 0.1017 0.46154 0.51359 3 2.881  

Coastal_South TA74 0.2993 0.0080 0.55932 0.56383 5 4.792  

Coastal_South TA69 0.6265 -0.0212 0.64706 0.63366 4 4.000  

Coastal_South TA78 0.0866 0.0931 0.29412 0.32419 4 3.643  

Coastal_South Ttr11 0.6388 0.0730 0.54783 0.59077 7 5.862  

Coastal_South Ttr48 0.2790 -0.0024 0.72034 0.71864 7 6.828  

Coastal_South EV37 0.8947 -0.0112 0.91071 0.90070 16 15.106 1 

Coastal_South MK5 0.4758 -0.0065 0.75862 0.75377 8 6.722  
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Coastal_South MK6 0.2205 -0.0701 0.67521 0.63119 8 6.728  

Coastal_South MK8 0.6726 0.0363 0.73729 0.76495 8 6.013  

Coastal_South MK9 0.0000 0.0767 0.26050 0.28206 6 4.668  

Coastal_South TexVet5 0.4072 0.0345 0.56522 0.58530 5 4.978  

Coastal_South  TexVet7   0.0746   -0.0271  0.48305 0.47036 5 4.778   

Coastal_North Tut08 0.0135 0.1201 0.60274 0.68446 8 7.645  

Coastal_North Tut02 0.0949 0.1228 0.64865 0.73883 6 5.756  

Coastal_North Ttr34 0.8771 -0.0385 0.71622 0.68983 7 6.293 1 

Coastal_North Ttr58 0.6366 -0.0025 0.51351 0.51223 5 4.644  

Coastal_North Ttr04 0.8408 0.0824 0.63636 0.69315 5 4.999  

Coastal_North Ttr63 0.1289 0.0774 0.76389 0.82751 10 9.298 1 

Coastal_North Tut01 0.3209 0.1418 0.11842 0.13785 4 3.583  

Coastal_North Ttr19 0.0071 0.2766 0.36111 0.49825 5 4.333  

Coastal_North Tut05 0.4425 -0.0391 0.37333 0.35937 3 3.000  

Coastal_North TtrFF6 0.5006 0.1693 0.47143 0.56680 5 4.588  

Coastal_North Tut09 0.3530 0.0785 0.50649 0.54936 7 6.380  

Coastal_North KMW12a 0.0592 0.0137 0.67105 0.68029 5 4.982  

Coastal_North TA67 0.0268 0.0757 0.25974 0.28088 3 2.981  

Coastal_North TA74 0.0169 0.2135 0.31507 0.40000 5 4.656  

Coastal_North TA69 0.1650 0.0744 0.65789 0.71044 4 4.000  

Coastal_North TA78 0.2048 0.1209 0.12987 0.14761 3 2.992  

Coastal_North Ttr11 0.1286 0.0548 0.52632 0.55664 6 5.497  

Coastal_North Ttr48 0.2248 0.1127 0.40000 0.45047 5 4.278  

Coastal_North EV37 0.0000 0.2113 0.67606 0.85586 14 13.008  

Coastal_North MK5 0.0578 0.1879 0.51351 0.63155 6 4.946  

Coastal_North MK6 0.6809 0.0280 0.59722 0.61432 5 4.988  

Coastal_North MK8 0.2736 0.1347 0.56000 0.64662 8 7.136  

Coastal_North MK9 0.4551 0.0753 0.33766 0.36499 5 4.616  

Coastal_North TexVet5 0.9644 0.0262 0.55405 0.56885 6 5.256  
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Coastal_North TexVet7 0.0293 0.2990 0.24675 0.35133 4 3.808   

Pelagic_Atlantic Tut08 0.5086 0.0297 0.83178 0.85714 10 9.678 1 

Pelagic_Atlantic Tut02 0.6151 0.0060 0.84906 0.85415 11 10.598 1 

Pelagic_Atlantic Ttr34 0.8011 0.0003 0.73585 0.73607 8 7.377 1 

Pelagic_Atlantic Ttr58 0.1191 0.0583 0.81132 0.86131 9 8.694 2 

Pelagic_Atlantic Ttr04 0.4610 -0.0057 0.83178 0.82708 11 10.024 2 

Pelagic_Atlantic Ttr63 0.2552 0.0678 0.78095 0.83750 18 15.074 5 

Pelagic_Atlantic Tut01 0.5801 0.0629 0.29245 0.31436 4 3.688  

Pelagic_Atlantic Ttr19 0.0695 0.0099 0.79048 0.79836 9 8.950 1 

Pelagic_Atlantic Tut05 0.6862 0.0239 0.69811 0.71510 6 5.834 1 

Pelagic_Atlantic TtrFF6 0.4987 0.0366 0.79048 0.82037 14 11.913 7 

Pelagic_Atlantic Tut09 0.0087 0.1388 0.70476 0.81782 10 9.285 2 

Pelagic_Atlantic KMW12a 0.6432 -0.0010 0.76415 0.76339 9 7.856 2 

Pelagic_Atlantic TA67 0.8947 0.0194 0.50943 0.51945 4 3.453 1 

Pelagic_Atlantic TA74 0.8700 -0.0378 0.72642 0.70008 6 5.428 1 

Pelagic_Atlantic TA69 0.9777 0.0145 0.57547 0.58388 5 4.453 1 

Pelagic_Atlantic TA78 0.6608 0.0191 0.70755 0.72123 6 5.838 2 

Pelagic_Atlantic Ttr11 0.8135 0.0210 0.81731 0.83473 12 11.011 2 

Pelagic_Atlantic Ttr48 0.7863 -0.0119 0.82857 0.81891 7 6.996  

Pelagic_Atlantic EV37 0.2226 0.0173 0.88571 0.90125 19 16.137 3 

Pelagic_Atlantic MK5 0.4678 0.0042 0.87500 0.87872 15 14.004 3 

Pelagic_Atlantic MK6 0.8890 0.0107 0.87619 0.88558 14 13.050 3 

Pelagic_Atlantic MK8 0.9393 -0.0195 0.79439 0.77930 10 9.143  

Pelagic_Atlantic MK9 0.0520 0.0560 0.75701 0.80172 9 8.130 2 

Pelagic_Atlantic TexVet5 0.9919 -0.0132 0.86667 0.85546 11 9.860 2 

Pelagic_Atlantic TexVet7 0.8286 0.0165 0.74286 0.75530 9 7.744 3 

Pelagic_Mediterranean Tut08 0.7168 0.0626 0.78431 0.83615 7 7.000  

Pelagic_Mediterranean Tut02 0.3378 0.0888 0.78431 0.86003 11 10.941 1 

Pelagic_Mediterranean Ttr34 0.0076 0.0227 0.67308 0.68857 7 6.918 1 
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Pelagic_Mediterranean Ttr58 0.5696 0.0862 0.71154 0.77801 6 6.000  

Pelagic_Mediterranean Ttr04 0.2713 0.0558 0.78846 0.83458 9 9.000  

Pelagic_Mediterranean Ttr63 0.8224 -0.0470 0.88235 0.84314 15 14.761 1 

Pelagic_Mediterranean Tut01 0.0096 0.4013 0.15385 0.25597 3 3.000  

Pelagic_Mediterranean Ttr19 0.7633 -0.0098 0.80000 0.79232 7 7.000  

Pelagic_Mediterranean Tut05 0.7417 -0.0006 0.65385 0.65347 5 4.923  

Pelagic_Mediterranean TtrFF6 0.2140 -0.1823 0.94118 0.79752 7 7.000  

Pelagic_Mediterranean Tut09 0.1373 0.0753 0.66667 0.72044 7 6.997  

Pelagic_Mediterranean KMW12a 0.5745 0.0246 0.63462 0.65049 7 6.918  

Pelagic_Mediterranean TA67 0.9665 -0.0473 0.68627 0.65560 3 3.000  

Pelagic_Mediterranean TA74 0.1093 0.0642 0.48077 0.51344 5 5.000  

Pelagic_Mediterranean TA69 0.1125 0.0536 0.58824 0.62124 6 5.882 2 

Pelagic_Mediterranean TA78 0.1520 -0.0526 0.61538 0.58495 4 4.000  

Pelagic_Mediterranean Ttr11 0.2417 0.0652 0.80392 0.85944 10 9.994  

Pelagic_Mediterranean Ttr48 0.6703 0.0668 0.76471 0.81887 7 6.941  

Pelagic_Mediterranean EV37 0.1685 0.0824 0.81250 0.88465 14 14.000  

Pelagic_Mediterranean MK5 0.6142 -0.1452 0.84000 0.73455 11 10.958  

Pelagic_Mediterranean MK6 0.2712 0.0787 0.82000 0.88929 16 15.916 3 

Pelagic_Mediterranean MK8 0.2731 0.0051 0.76471 0.76859 9 8.824  

Pelagic_Mediterranean MK9 0.2229 0.1587 0.58824 0.69812 7 6.882  

Pelagic_Mediterranean TexVet5 0.1395 0.0886 0.70588 0.77383 8 7.935  

Pelagic_Mediterranean TexVet7 0.1042 0.1489 0.54902 0.64415 5 5.000   

ALL Tut08 0.0000 0.1006 0.76286 0.84804 11 10.160  

ALL Tut02 0.0000 0.0957 0.76923 0.85051 12 10.231  

ALL Ttr34 0.4176 0.0306 0.73580 0.75897 10  7.217  

ALL Ttr58 0.0000 0.1217 0.67797 0.77181 10  8.071  

ALL Ttr04 0.0002 0.0840 0.73109 0.79806 11  8.830  

ALL Ttr63 0.0000 0.1035 0.78000 0.86991 23 16.117  

ALL Tut01 0.0628 0.1255 0.24370 0.27862 5  4.024  
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ALL Ttr19 0.0000 0.1537 0.57349 0.67747 9  8.469  

ALL Tut05 0.0000 0.2100 0.52958 0.67017 6  5.332  

ALL TtrFF6 0.0000 0.1046 0.69828 0.77972 15 10.038  

ALL Tut09 0.0000 0.2122 0.55493 0.70417 10  8.932  

ALL KMW12a 0.0000 0.0962 0.59104 0.65384 9  6.737  

ALL TA67 0.0002 0.1803 0.46479 0.56686 4  3.137  

ALL TA74 0.2362 0.0549 0.54674 0.57846 6  5.080  

ALL TA69 0.0617 0.0339 0.61798 0.63962 7  4.409  

ALL TA78 0.0001 0.1540 0.43575 0.51496 6  5.227  

ALL Ttr11 0.0000 0.1723 0.66286 0.80065 12  9.936  

ALL Ttr48 0.0000 0.1448 0.68555 0.80143 7  6.993  

ALL EV37 0.0000 0.0996 0.84118 0.93404 25 20.013  

ALL MK5 0.0014 0.0795 0.75575 0.82095 15 11.883  

ALL MK6 0.0000 0.1004 0.74138 0.82405 19 13.774  

ALL MK8 0.0000 0.0975 0.72394 0.80206 10  9.023  

ALL MK9 0.0000 0.1984 0.46927 0.58526 9  7.388  

ALL TexVet5 0.0000 0.0934 0.67335 0.74266 11  9.520  

ALL TexVet7 0.0006 0.1484 0.51268 0.60189 9  6.384   
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Appendix A5.5. Selection of the optimal number of clusters for the DAPC analysis using 

the lowest BIC (Bayesian Information Criterion). 
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Appendix A5.6.  Evanno plots of the STRUCTURE analyses separating (a) the coastal 

and pelagic groups, (b) the two coastal populations and (c) the two pelagic populations. 

 

 

 

 

 

 

 

Appendix A5.7. Mean Deviance Information Criterion (and SD) values using the 10 

replicate TESS runs for each K from 2 to 10. 

a) 

b) 

c) 
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Appendix A5.8. Polymorphic nucleotide sites defining the 55 mitochondrial control region haplotypes for bottlenose dolphins in the 

North-East Atlantic. Site refers the nucleotide position in the sequences, Hap 1 refers to Haplotype Ttrunc1, 2 to Ttrunc2, etc. 
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1 T C A C T C T C T A C G C T A C T C T T C C C T C C G T A C T C C A T T C G T A T A G A A G 

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . 

3 . . . . . . . . . . . . . . G . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . 

4 . . . T . . C . C . T . . . . . . . . C T . . . . . . . . . . T . C . C . . . . . G . . . . 

5 . . . T . . . . C . T . . . . . . . C C T . . . T . . . . . . T . C . . T . . . . . . . . . 

6 . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . 

7 . . . T . T . . . . T . . C C A . . . C . . T . . . A . . . C T . C . . . A . . C . A . . . 

8 . . . T . . . . C . . . . . . . . . . C . . . . . . . . . . . T T C . . T . . G . . . . . . 

9 . . . T . . . . C . T . . . . . . . . C T . . . T . . . . . . T . C . . T . . . . . . . . . 

10 C . . T C T . . . . T . . . C T . . . C . T . . . . A . . T C T T C . . . A . . C . . . . . 

11 . . . T . . . . C . T . . . . . . - . C T . . . . . . . . . . T . C . C . . . . . G . . . . 

12 . . . T . . . . C . T . . . . . . . . C T . . . . . . . . T . T . C . C . . . . . G . G . . 

13 C . . T C T . . . . T . . . C T . . . C . T . . . . A . . . C T T C . . . A . . C . . . . . 

14 . . . T . T . . . . T . . C C A . . . . . T . . . . A . . . C T . T . . . A . G C . A . . . 

15 . . . T . . . . C . T . . . . . . . . C T . . . . . . . . . . T T C . C . . . . . G . . . . 

16 . . . T . . . . C . T . . . . . . . . C T . . . . . . . . . . T . C . C . . . . . G . . . . 

17 . . . T . . . . C . T . . . . . . . . C T . . . T . . . . . . T . C . . T . . . . . . . . A 

18 . . . T . T . . . . T . . C C A . . . . . . . . . . A . . . C T . T . . . A . . C . A . . . 

19 . . . T . . . . C . T . . . . . . - . . T . . . . . . . . . . T T C . C . . . . . G . . . . 

20 . . . T . . . . . . T . . . . . . - . C T . . . . . . . . . . T . C . C . . . . . . . . . . 

21 C . . T C T . . C . T . . . C . . . . . . . . . . . A . . . C T T C . . . A C . . G . . . . 

22 . . . T . . . . C . T . . . . . . . . C T . . . T . . . . . . T . C . . T . . . . . . . G . 

23 C . G T C T . . C . T . . . C . . . . . . . . . . . A . . . C T T C . . . A C . . G . . . . 

24 . . . T . . . T C . T . . . . . . . . C T . . . T . . . . . . T . C . . T A . . . . . . . . 
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25 C . . T C T . . C . T . . . C . . . . . . T . . . . A . . . C T T C . . . A C . . G . . . . 

26 . . . T . . . . C . T . . . . . . - . C T . . . . . . . . . . T T C . C . . . . . G . . . . 

27 . . . T . . . . C . . . . . . . . . . C T . . . . . . . . . . T . C . C . . . . . G . . . . 

28 . . . T . . . . . . T . . . . . . - . C T . . . . . . . . . . T . C . C . . . . . G . . . . 

29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A . . . 

30 . . . T . . . . C . . . . . . . C . . C . . . . . . A . . . C T T C . . T . . . . . . . . . 

31 . . . T . . . . C . T . . . . . . . . C T . . C T . . . . . . T . C . . T . . . . . . . . . 

32 . . . T . . . . C . T . . . . . . . . C T . . . . . . . . T . . . C . C . . . . . G . G . . 

33 . T . T . . . . C . . . . . . . . . . . . T . . . . . . . . . . T C . . . . . . . . . . . . 

34 . . . T . . . . C . T . . . . . . . . C T T . . T . . . . . . T . C . . T . . . . . . . . . 

35 . T . T . . . . C . . . . . . . . . . C . T . . . . . . . . . . T C . . . . . . . . . . . . 

36 . . . T . . . . C . T . . . . . . . . C T . . . . . . C . . . T T C . C . . . . . G . . . . 

37 . . . T . . . . C . T . . . . . . . . C T . . . T . . . . . C T . C C . T . . . . . . . . . 

38 . . . T . . . . C . T A . . . . . . . C T . . . T . . . . . . T . C . . T . . . . . . . . . 

39 . . . T . . . . C . T . . . . . . . . C T . . . T . . . . . . T T C . . T . . . . . . . . . 

40 . . . T . . . . C . . . . . . . . . . C . . . . . . A . . . C T T C . . T . . . . . . . . . 

41 . . . T C . . . C . T . . . . . . . . . T . . . T . . . . . . T . C . . T . . . . . A . . . 

42 . . . T . . . . C . . . . . . . . . . C . . . . . . A . . . . T T C . . T . . G . . . . . . 

43 C . . T C T . . . . T . T . C T . . . C . T . . . . A . . . C T T C . . . A . . C . . . . . 

44 . . . T . . . . C . T . . . . . . . . C T . . . T . . . . . . T . C C . T . . . . . . . . . 

45 . . . T . . . . . . . . . . . . . . . C . . T . . T A . . . . T T C . . T . . . . . . . . . 

46 . . . T . . . . C . T . . . . . . - . . T . . . . . . . . . . T . C . C . . . G . G . . . . 

47 C . . T C T . . . T T . T . C T . . . C . T . . . . A . . . C T T C . . . A . . . . . . . . 

48 . . . T . . . . C . T . . . . . . . . C T . . . T . . . . T . T . C . . T . . . . . . . . . 

49 C . . T C T . . . . T . T . C T . . . C T T . . . . A . . . C T T C . . . A . . C . . . . . 

50 . T . T . . . . C . . . . . . . . . . C . T . . . . . . . . . . . C . . . . . . . . . . . . 

51 C . . T C T . . C . . . . . C T . . . C . . . . . . A . . . C T T C . . . A . . . G . . . . 

52 . . . T . . . . C . T A . . . . . . . C T . . . . . . . . . . T . C . C . . . . . G . . . . 

53 . . . T . . . . C . T . . . . . . . . C T . . . T . . . G . . T . C . . T . . . . . . . . . 
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54 . . . T . . . . C . . . . . . . . . . C . . . . . . . . . . . T T C . . T . . . . . . . . . 

55 . . . T . . . . C . T . . . . T . . . C T . . . . . . . . C . T . C . C . . . . . . . . . . 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

 

 

245 

 

Appendix A5.9. Haplotype frequencies by group and population. GENBANK AN refers to GENBANK Accession Numbers, Coastal S to 

Coastal South, Coastal N to Coastal North, Pelagic A to Pelagic Atlantic, Pelagic M to Pelagic Mediterranean, Unknown to individuals that were 

not included in microsatellite analyses (due to amplification issues), and thus were not assigned to any population. 

 

Haplotype 

GENBANK 

AN 

Global 

(N = 

369) 

Coastal 

(N=191) 

Coastal S 

(N = 

115) 

Coastal 

N (N = 

76) 

Pelagic 

(N = 152) 

Pelagic 

A (N = 

101) 

Pelagic 

M (N = 

51) 

Unknown 

(N = 26) 

Ttrunc1 KF650783 0.190 0.335 0.217 0.513 0.000 0.000 0.000 0.231 

Ttrunc2 KF650784 0.260 0.466 0.670 0.158 0.013 0.020 0.000 0.192 

Ttrunc3 KF650785 0.051 0.094 0.096 0.092 0.000 0.000 0.000 0.038 

Ttrunc4 KF650786 0.035 0.010 0.017 0.000 0.072 0.109 0.000 0.000 

Ttrunc5 KF650787 0.046 0.084 0.000 0.211 0.000 0.000 0.000 0.038 

Ttrunc6 KF650788 0.005 0.000 0.000 0.000 0.013 0.020 0.000 0.000 

Ttrunc7 KF650789 0.019 0.000 0.000 0.000 0.039 0.059 0.000 0.038 

Ttrunc8 KF650790 0.030 0.000 0.000 0.000 0.066 0.099 0.000 0.038 

Ttrunc9 KF650791 0.046 0.000 0.000 0.000 0.105 0.109 0.098 0.038 

Ttrunc10 KF650792 0.005 0.000 0.000 0.000 0.013 0.020 0.000 0.000 

Ttrunc11 KF650793 0.008 0.000 0.000 0.000 0.020 0.020 0.020 0.000 

Ttrunc12 KF650794 0.014 0.000 0.000 0.000 0.033 0.050 0.000 0.000 

Ttrunc13 KF650795 0.051 0.000 0.000 0.000 0.125 0.188 0.000 0.000 

Ttrunc14 KF650796 0.005 0.000 0.000 0.000 0.007 0.010 0.000 0.038 

Ttrunc15 KF650797 0.016 0.000 0.000 0.000 0.026 0.020 0.039 0.077 

Ttrunc16 KF650798 0.005 0.000 0.000 0.000 0.007 0.000 0.020 0.038 

Ttrunc17 KF650799 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc18 KF650800 0.005 0.000 0.000 0.000 0.013 0.000 0.039 0.000 

Ttrunc19 KF650801 0.011 0.000 0.000 0.000 0.026 0.000 0.078 0.000 
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Ttrunc20 KF650802 0.014 0.000 0.000 0.000 0.033 0.000 0.098 0.000 

Ttrunc21 KF650803 0.035 0.000 0.000 0.000 0.086 0.010 0.235 0.000 

Ttrunc22 KF650804 0.003 0.000 0.000 0.000 0.007 0.000 0.020 0.000 

Ttrunc23 KF650805 0.003 0.000 0.000 0.000 0.007 0.000 0.020 0.000 

Ttrunc24 KF650806 0.011 0.000 0.000 0.000 0.020 0.000 0.059 0.038 

Ttrunc25 KF650807 0.011 0.000 0.000 0.000 0.026 0.000 0.078 0.000 

Ttrunc26 KF650808 0.003 0.000 0.000 0.000 0.007 0.000 0.020 0.000 

Ttrunc27 KF650809 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc28 KF650810 0.005 0.000 0.000 0.000 0.013 0.000 0.039 0.000 

Ttrunc29 KF650811 0.005 0.010 0.000 0.026 0.000 0.000 0.000 0.000 

Ttrunc30 KF650812 0.027 0.000 0.000 0.000 0.046 0.000 0.137 0.115 

Ttrunc31 KF650813 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc32 KF650814 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc33 KF650815 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc34 KF650816 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc35 KF650817 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc36 KF650818 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc37 KF650819 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc38 KF650820 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.038 

Ttrunc39 KF650821 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc40 KF650822 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.038 

Ttrunc41 KF650823 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc42 KF650824 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc43 KF650825 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc44 KF650826 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc45 KF650827 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc46 KF650828 0.008 0.000 0.000 0.000 0.020 0.030 0.000 0.000 

Ttrunc47 KF650829 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc48 KF650830 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 
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Ttrunc49 KF650831 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc50 KF650832 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc51 KF650833 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc52 KF650834 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc53 KF650835 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc54 KF650836 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

Ttrunc55 KF650837 0.003 0.000 0.000 0.000 0.007 0.010 0.000 0.000 

  Total 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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3) Appendix Chapter 6 

 

Appendix A6.1. Flow chart about inference of population history using ABC in program 

DIYABC. 
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Appendix A6.2. Supplementary details on the ABC analyses 

Mutation model 

Coalescent simulations assume a mutation model for each type of loci. The mutation 

model for microsatellite loci was a generalized stepwise-mutation (GSM) model (Estoup et al. 

2002) with two parameters: a mean mutation rate ( ) and mean of the geometric 

distribution for the length, in repeat numbers, of mutation events ( ) drawn from uniform 

prior distributions ( : [10
-3

 – 10
-4

] and : [0.1-0.3], see Appendix A6.3). We accounted 

for variation in µmic and P among loci by drawing their individual values from a gamma 

distribution (Appendix A6.3). These settings allowed for large mutation rate variance across 

loci (i.e., range of 10
−5

 to 10
−2

). We also considered mutations inserting or deleting a single 

nucleotide in the microsatellite sequence.  

We used jModelTest 2.1 (Darriba et al. 2012) to identify the best substitution model 

and estimated its parameter. The best mutation model describing the mtDNA sequence 

evolution was a HKY+I+G model (Hasegawa et al. 1985) with a proportion of constant sites 

of 86.5%, and a shape of the gamma distribution of mutations among sites equal to 0.63 

(Appendix A6.3). We assumed a per-site and per-generation mutation rate ranging uniformly 

between 1 × 10
−7

 and 1 × 10
−5

, as found in the literature (Alter & Palumbi 2009; Fontaine et 

al. 2010). 

 

Summary statistics 

Overall, 78 summary statistics describing within- and among population genetic 

diversity were calculated in DIYABC. Within population statistics for microsatellites included 

the mean number of alleles per locus, expected heterozygosity, allele size variance, MGW 

statistic of Garza & Williamson across loci (Garza & Williamson 2001). Between population 

statistics for microsatellites included the mean number of alleles between two populations, FST 

(Weir & Cockerham 1984), shared allele distance (Chakraborty & Jin 1993), and (δµ)
2
 

Goldstein’s distance (Goldstein et al. 1995). For the mtDNA data, the descriptive statistics 

within populations include the number of segregating sites, the mean pairwise difference and 

its variance, Tajima’s D, and the number of private segregating sites. Statistics computed 

between groups were the mean of within sample pairwise differences, mean of between 

sample pairwise differences, and HST between two samples (Hudson et al. 1992).  

µmic

P

µmic P
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Appendix A6.3. Model specification, prior distributions for demographic parameters 

and mutation model parameters for the ABC analysis (Figure 6.2). 

Demographic Parameter Type Prior 

N1 N UN~[1 – 4,000] 

N2 N UN~[1 – 4,000] 

N3 N UN~[1 – 15,000] 

N4 N UN~[1 – 10,000] 

Na N UN~[10 – 10,000] 

t1 (≤ t3) T UN~[10 – 5,000] 

t2 (≤ t3) T UN~[10 – 5,000] 

t3 (≤ t4) T UN~[100 – 5,000] 

t4 T UN~[100 – 5,000] 

tr T UN~[10 – 5,000] 

DB T UN~[5 – 15] 

NBN N UN~[1 – 50] 

   
Microsatellites mutation parameter GSM (40 steps allowed) 

  
UN~[1 x 10

-4
 – 1 x10

-3
] 

Gµmic 
 

GA~[1 x 10
-5

, 1 x 10
-2

, , 2] 

   
UN~[1 x 10

-1
, 3 x 10

-1
] 

GP 
 GA~[1 x10

-2
, 9 x 10

-1
, , 2] 

SNI 
 

LU~[1 x10
-8

, 1 x10
-5

] 

GSNI 
 

GA~[1 x10
-9

, 1 x10
-4

, SNI, 2] 

   
MtDNA mutation parameter HKY (p-inv: 86.5, α: 0.634) 

µseq 
 

UN~[1 x 10
-7

, 1 x 10
-5

] 

K1 
 

UN~[0.050, 20] 

Type of parameters: (N) effective population size, (t) time of the event in generation. Uniform distribution (UN) with 2 

parameters: min and max; Gamma distribution (GA) with 4 parameters: min, max, mean and shape; Log-Uniform (LU) 

distribution with 2 parameters: min and max. See Figure 6.2 for the demographic parameters of each model tested. The 

mutation model parameters for the microsatellite loci were the mean mutation rate (µmic), the parameter determining the 

shape of the gamma distribution of individual loci mutation rate (P), and the Single Insertion Nucleotide rate (SNI). The Mt-

DNA mutation model was a HKY with two variable parameters, the per-site and generation mutation rate (µseq) and the 

transition/transversion ratio (K1) parameter, and two fixed parameters, the proportion of constant sites (p-inv.), and the shape 

of the Gamma distribution of mutations among sites (α). 

µmic

µmic

P

P



Appendix 

 

 

252 

 

 

Appendix A6.4. Sampling locations and genetic group of origin for individuals included 

in ecology and/or morphometric analyses (N Coastal = 21 and N Pelagic = 42). 

 

 

 

Appendix A6.5. External morphometric measurements of stranded bottlenose dolphins. 
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Appendix A6.6. Model choice procedure and ABC performance analysis for step a in Figure 6.2. 

 
SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10 SC11 

Post. Pr 3.1% 64.7% 27.5% 0.0% 0.1% 0.1% 0.0% 1.4% 2.0% 0.1% 1.2% 

95%CI [0.0 – 8.6] [62.6  –  66.7] [24.0 – 31.0] [0 – 5.7] [0 – 5.8] [0 – 5.8] [0 – 5.7] [0 – 7.0] [0 – 9.0] [0 – 5.7] [0 – 6.8] 

            
Confidence in SC selection 

          

 
SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10 SC11 

D1 60.6% 9.4%* 5.6% 4.2% 6.8% 8.8% 3.0% 5.8% 6.6% 9.6% 7.6% 

D2 3.2%† 68.6% 22.4%† 0.2%† 0.2%† 0.2%† 0.0%† 4.8%† 2.2%† 1.4%† 0.2%† 

D3 1.2% 16.8%* 66.0% 0.0% 0.2% 0.0% 0.0% 1.2% 3.4% 0.4% 0.2% 

D4 2.0% 0.0%* 0.2% 70.6% 11.0% 0.2% 0.2% 0.2% 6.4% 2.8% 1.6% 

D5 1.8% 0.0%* 0.0% 12.4% 68.0% 0.0% 0.0% 0.2% 1.4% 3.8% 4.6% 

D6 4.2% 0.4%* 0.0% 0.2% 0.4% 62.8% 18.0% 2.4% 1.0% 6.8% 5.0% 

D7 0.8% 0.0%* 0.0% 0.0% 0.0% 9.0% 70.6% 2.4% 0.0% 0.2% 1.2% 

D8 1.6% 2.0%* 1.8% 0.2% 0.0% 0.6% 3.6% 55.8% 14.2% 7.4% 0.2% 

D9 3.0% 1.8%* 2.6% 3.0% 1.0% 0.2% 0.2% 13.2% 51.4% 6.4% 0.2% 

D10 12.8% 0.2%* 1.0% 3.0% 6.0% 8.8% 1.8% 13.0% 12.0% 60.2% 1.6% 

D11 8.8% 0.8%* 0.4% 6.2% 6.4% 9.4% 2.6% 1.0% 1.4% 1.0% 77.6% 

            
Model check (number of outlying statistics) 

         
P < 0.05 12 8 7 15 14 13 13 11 11 13 16 

P < 0.01 2 1 2 5 2 3 7 3 1 5 6 

P < 0.001 2 1 1 3 3 2 4 2 2 3 2 
D – proportion of case in which the simulation-based model choice procedure was able to select a scenario as the most probable with non-overlapping confidence intervals of 

the posterior probabilities of each scenario. * Type-I or α-error rate. † Type-II or β-error rate and 1- Σ βi provides the power of the model choice procedure. 
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Appendix A6.7. Model choice procedure and ABC performance analysis for step b in 

Figure 6.2. 

Model selection SC1 SC2 SC3 SC4 

Post. prob. 0.7% 15.7% 29.2% 54.4% 

95CI [0.0 – 2.5] [14.2–17.3] [27.1–31.3] [53.0–55.7] 

     

Confidence in model choice  

 
SC1 SC2 SC3 SC4 

D1 95.60% 11.00% 13.40% 13.6%* 

D2 2.00% 37.40% 17.20% 22.4%* 

D3 1.40% 19.20% 44.80% 22.4%* 

D4 1.0%† 32.4%† 24.6%† 41.60% 

     

Model check (number of outlying statistics) 
  P < 0.05 15 8 10 7 

P < 0.01 3 1 0 1 

P < 0.001 2 1 2 1 
 

D – proportion of case in which the simulation-based model choice procedure was able to select a scenario as the 

most probable with non-overlapping confidence intervals of the posterior probabilities of each scenario. * Type-I 

or α-error rate. † Type-II or β-error rate and 1- Σ βi provides the power of the model choice procedure. 
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Appendix A6.8. Model choice procedure and ABC performance analysis for step c in 

Figure 6.2. 

 
SC1 SC2 SC3 SC4 SC5 

Post. Pr 35.7% 36.7% 17.7% 5.5% 4.4% 

95%CI [35.0 – 36.5] [36.0 – 37.4] [17.1 – 18.3] [5.0 –  6.0] [3.9 – 4.9] 

      Confidence in model choice 
   

 
SC1 SC2 SC3 SC4 SC5 

D1 51.4% 36.4%
*,†† 33.0%†† 26.0%†† 25.8%†† 

D2 21.6%
†,**

 27.0% 17.0%
†
 12.6%

†
 11.6%

†
 

D3 11.2%
**

 14.6%
*
 30.4% 8.8% 12.4% 

D4 10.8%
**

 14.4%
*
 11.0% 34.4% 20.0% 

D5 5.0%
**

 7.6%
*
 8.6% 18.2% 30.2% 

      Model check  (number of outlying statistics) 
  P < 0.05 7 7 2 7 5 

P < 0.01 1 1 3 1 1 

P < 0.001 1 1 0 1 1 
 

D – proportion of case in which the simulation-based model choice procedure was able to select a scenario as the 

most probable with non-overlapping confidence intervals of the posterior probabilities of each scenario. * Type-I 

or α-error rate for SC2. † Type-II or β-error rate and 1- Σ βi provides the power of the model choice procedure 

for SC2. ** Type-I or α-error rate for SC1. †† Type-II or β-error rate and 1- Σ βi provides the power of the 

model choice procedure for SC1. 
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Appendix A6.9.  Model check procedure for the step c in Figure 6.2. 

Statistics Observed 

Prob. (Ssimul. < Sobs.) 

SC1 SC2 SC3 SC4 SC5 

Microsatellites       

MGW_3 0.7616 0.0285 (*) 0.0190 (*) 0.0055 (**) 0.0165 (*) 0.0145 (*) 

FST_1&2 0.059 0.917 0.9665 (*) 0.454 0.916 0.6405 

MtDNA       

NHA_1 4 0.0030 (**) 0.0070 (**) 0.0055 (**) 0.0015 (**) 0.0035 (**) 

NHA_2 5 0.0170 (*) 0.0260 (*) 0.0765 0.0285 (*) 0.052 

MPD_1 0.8818 0.0420 (*) 0.0705 0.0635 0.0440 (*) 0.0445 (*) 

DTA_1 -1.5873 0.0190 (*) 0.0300 (*) 0.0230 (*) 0.0195 (*) 0.0190 (*) 

MNS_1 4.8333 0.0305 (*) 0.0460 (*) 0.0470 (*) 0.0255 (*) 0.0395 (*) 

NH2_1&2 6 0.0000 (***) 0.0005 (***) 0.0040 (**) 0.0000 (***) 0.0005 (***) 

NH2_1&4 19 0.0385 (*) 0.0420 (*) 0.0605 0.0350 (*) 0.0450 (*) 

HST_1&2 0.4054 0.9530 (*) 0.9670 (*) 0.907 0.9525 (*) 0.9315 

Evolutionary scenarios SC1 to SC5 are represented in Figure 6.2c. The probability Prob.(Ssimul. < Sobs.) given for 

each summary statistic was calculated from 1,000 pseudo-observed datasets simulated from the posterior 

distributions of parameters obtained under the focused scenario. Corresponding tail-area probabilities (P-values) 

were obtained as Prob. (Ssimul. < Sobs.) and 1.0 - Prob. (Ssimul. < Sobs.) for Prob. (Ssimul. < Sobs.) ≤ 0.5 and > 0.5, 

respectively (*, **, *** = tail-area probability < 0.05, < 0.01 and < 0.001, respectively). In addition to the 

statistics used during the model choice procedure, the model check procedure used also the two sample statistics 

including the mean genetic diversity, mean size variance, and the classification index for microsatellite loci. For 

mtDNA the model check procedure used also within sample statistics including the number of haplotype, mean 

number of the rarest nucleotide at segregating sites and its variance, and the two sample statistics comprising the 

number of haplotypes and number of segregating sites. Only significant summary statistics for at least one 

scenario are shown. Abbreviations for the summary statistics are as follows: Mean Garcia-Williamson index 

(MGW), FST-statistics (FST); number of mtDNA haplotypes (NHA), mean pairwise differences (MPD); 

Tajima’s D (DTA); mean number of the rarest nucleotide at segregating sites (MNS); the number of distinct 

haplotypes in two pooled samples (NH2); HST value between populations. Numbers following each statistics 

refer to the population(s) considered following Figure 6.2. 
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Appendix A6.10. Parameter estimation from scenario SC1 and 2 combined (in Figure 

6.2c). Mode, median and x% Quantile (Qx) are provided. 

Parameter Mode Q2.5 Median Q97.5 

N1-CS  2,160   864   2,060   3,560  

N2-CN  1,990   678   1,960   3,660  

N3-PA  12,200   6,360   11,600   14,700  

N4-PM  4,810   1,500   4,730   9,200  

Na  5,000   766   5,130   9,560  

t1  128   42   133   341  

t2  379   117   447   1,130  

t3  516   215   722   2,390  

t4  2,200   881   2,810   4,860  

µmic  2.50E-04 1.58E-04 3.01E-04 6.60E-04 

P 2.68E-01 1.51E-01 2.53E-01 3.00E-01 

SNI 1.00E-08 1.00E-08 1.60E-08 1.50E-07 

µseq 2.32E-06 1.43E-06 2.55E-06 5.55E-06 

K1 1.12E+01 5.47E-01 1.00E+01 1.94E+01 

 

N is expressed in number of diploid individuals, times (t) are provided in generation before 

present. 
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Appendix A6.11a. δ
34

S and δ
13

C signatures for coastal and pelagic bottlenose dolphins. 

Solid lines indicated Standard Ellipses Areas corrected for small sample sizes (SEAc) and 

dotted lined Convex Hull Areas. Areas values (‰²) are given in the legend. The star indicates 

the possible migrant. 

 

 

Appendix A6.11b. δ
13

C and δ
15

N signatures for coastal and pelagic bottlenose dolphins. 

Solid lines indicated Standard Ellipses Areas corrected for small sample sizes (SEAc) and 

dotted lined Convex Hull Areas. Areas (‰²) values are given in the legend. The star indicates 

the possible migrant. 
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Appendix A6.12a to A6.12c. Measures of uncertainty of Bayesian ellipse areas (SEAB) 

based on 10
6
 posterior draws indicating 95, 75 and 50% credibility intervals from light 

to dark grey respectively for a) δ
34

S and δ
15

N,  b) δ
13

C and  δ
34

S and c) δ
13

C and δ
15

N. 

Black dots represent the mode of SEAB and SEAc.  
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4) Appendix of Chapter 7 – General discussion 

 

Appendix 7.A1. Genetic structure analysis within the Coastal South population. 

 

Genetic structure analyses at the scale of the North-East Atlantic placed bottlenose 

dolphins biopsied in the Normano-Breton gulf in the same cluster as stranded animals in 

France, in particular in the English Channel but there was also three stranded individuals from 

a small group of five individuals from the Bassin d’Arcachon (Bay of Biscay, France) that has 

now disappeared, and stranded dolphins in Galicia (the “Coastal South” population in Chapter 

5). 

TESS was run only on the individuals of the Coastal South population using the same 

steps and parameters as given in Chapters 4 and 5 to test for finer-scale population structure. 

TESS identified two populations corresponding to individuals sampled in France, in majority 

in the Normano-Breton gulf and individuals stranded in Galicia (Figure A7.1). Genetic 

differentiation was significant between the two populations identified by TESS (FST = 0.08, P 

< 0.001). 

 

Figure A7.1. TESS membership proportions of bottlenose dolphins sampled in France 

(in majority in the Normano-Breton gulf) and Galicia. Each vertical column 

corresponds to one individual, with the colors representing the membership proportions 

of its genome to each population.  
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5) Abstracts of each result chapter 

Chapter 3: Social structure and abundance of coastal bottlenose dolphins, Tursiops 

truncatus, in the Normano-Breton gulf, English Channel. 

A large but poorly studied bottlenose dolphin community, Tursiops truncatus, inhabits 

coastal waters of Normandy (Normano-Breton gulf, English Channel, France). We assessed 

the social structure and abundance of this community using photo-identification techniques. 

Like other bottlenose dolphin community worldwide, we found that this resident community 

has a fission-fusion social structure with fluid associations among individuals (Half-Weight 

Index = 0.09, SD = 0.136). Association patterns were highly variable as indicated by a high 

social differentiation (S = 0.95 ± 0.03). The majority of associations were casual, lasting days 

to months. However, individuals exhibited also a smaller proportion of long-term 

relationships. Group sizes were large (mean = 25) in comparison with other resident coastal 

communities, and variable (range: 1 to 100), which could be the results of ecological 

conditions, in particular resource predictability and availability. Analyses also showed that the 

community was organized in three social clusters that were not completely isolated from each 

other. Abundance was estimated at 420 dolphins (95% CI: 331-521), making this coastal 

community one of the largest identified along European coastlines. Long-term demographic 

monitoring of these dolphins will be critical for its management, as human activities in the 

gulf are expected to increase in the upcoming years.  

 

Key words: abundance, bottlenose dolphin, fission-fusion, mark-recapture, photo-

identification, social structure. 
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Chapter 4: Evaluating the influence of ecology, kinship and phylogeography on the 

social structure of resident coastal bottlenose dolphins 

Animal social structures are shaped by external environmental factors and individual 

intrinsic behavioral traits. They represent a balance between the costs and benefits of group-

living to maximize individual fitness. In fission-fusion societies, relationships are highly 

flexible and influenced by ecological conditions. Bottlenose dolphin societies are fission-

fusion, which are variable in terms of association strength, influence of kinship and 

relationships between or within sexes throughout the wide range of habitats where they are 

found. Here, a combination of markers and analyses were used to study the population 

structure and the drivers of social structure in coastal bottlenose dolphins of the Normano-

Breton gulf (English Channel). While a single population was identified using genetics, stable 

isotopes revealed three ecological clusters, consistent with previous social structure analyses 

based on photo-identification data. In contrast to most studied bottlenose dolphin populations, 

and many fission-fusion species, individuals did not preferentially associate with kin. Instead 

they associate with individuals of similar ecology. Bottlenose dolphins in coastal waters of the 

North-East Atlantic may have been more recently founded from a pelagic population than in 

other parts of the world. This suggests that coastal bottlenose dolphin social structure might 

have been derived from a pelagic social organization. Thus, a combination of ecological 

conditions, in particular resource availability and the absence of predators, individual 

behavioral preferences and population structure history may shape dolphin social 

organization. We emphasize that stable isotope analysis is a promising tool to investigate the 

link between social structure and foraging ecology, particularly in difficult to observe taxa. 

 

Keywords: social structure, ecological specializations, relatedness, population 

genetics, stable isotopes. 
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Chapter 5: Habitat-driven population structure of bottlenose dolphins, Tursiops 

truncatus, in the North-East Atlantic 

Despite no obvious barrier to gene flow, historical environmental processes and 

ecological specializations can lead to genetic differentiation in highly mobile animals. 

Ecotypes emerged in several large mammal species as a result of niche specializations and/or 

social organization. In the North-West Atlantic, two distinct bottlenose dolphin (Tursiops 

truncatus) ecotypes (i.e. “coastal” and “pelagic”) have been identified. Here, we investigated 

the genetic population structure of North-East Atlantic (NEA) bottlenose dolphins on a large 

scale through the analysis of 381 biopsy-sampled or stranded animals using 25 microsatellites 

and a 682 bp portion of the mitochondrial control region. We shed light on the likely origin of 

stranded animals using a carcass drift prediction model. We showed, for the first time, that 

coastal and pelagic bottlenose dolphins were highly differentiated in the NEA. Finer-scale 

population structure was found within the two groups. We suggest that distinct founding 

events followed by parallel adaptation may have occurred independently from a large Atlantic 

pelagic population in the two sides of the basin. Divergence could be maintained by 

philopatry possibly as a result of foraging specializations and social organization. As coastal 

environments are under increasing anthropogenic pressures, small and isolated populations 

might be at risk and require appropriate conservation policies to preserve their habitats. While 

genetics can be a powerful first step to delineate ecotypes in protected and difficult to access 

taxa, ecotype distinction should be further documented through diet studies and the 

examination of cranial skull features associated with feeding. 

 

Keywords: population genetics, ecotypes, philopatry, feeding specializations, 

conservation, cetaceans 
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Chapter 6: Ecological opportunities and specializations shaped genetic divergence 

in a highly mobile marine top predator 

Environmental conditions can shape genetic and morphological divergences. Releases 

of new habitats during past environmental changes were a major driver of evolutionary 

diversification. Here, the forces shaping population structure and ecotype differentiation 

(“pelagic” and “coastal”) of bottlenose dolphins in the North-East Atlantic were investigated 

using complementary evolutionary and ecological approaches. Using Approximate Bayesian 

Computation population history analyses, we showed that coastal populations were founded 

by the Atlantic pelagic population after the Last Glacial Maximum probably as a result of 

newly available coastal ecological niches. Pelagic dolphins from the Atlantic and the 

Mediterranean Sea diverged during a period of high productivity in the Mediterranean Sea. 

Genetic differentiation between the coastal and pelagic ecotypes is likely maintained by niche 

specializations, as indicated by stable isotope and stomach content analyses, and social 

behavior. The two ecotypes were only weakly morphologically segregated in contrast to other 

parts of the world. This may be linked to weak contrasts between coastal and pelagic habitats 

and/or a relatively recent divergence. We suggest that ecological opportunity to specialize is a 

major driver of genetic and morphological divergences. Combining genetic, ecological and 

morphological approaches is essential to understand population structure of mobile and 

cryptic species. 

 

Key words: ecological niches, demographic history, genetic structure, morphology, 

bottlenose dolphins  
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Structures sociale, écologique et génétique du grand dauphin, Tursiops 

truncatus, dans le golfe Normand-Breton et dans l’Atlantique Nord-Est 

 
Résumé : 

Les patrons de structuration des espèces animales à fine et à large échelles peuvent être façonnés par des facteurs 

environnementaux et des traits comportementaux individuels. Les objectifs de cette thèse combinant des 

approches sociales, génétiques, isotopiques et morphométriques sont de décrire et comprendre i) les structures 

sociale, écologique et génétique de la population de grands dauphins du golfe Normand-Breton (NB) et ii) la 

structure de population de l’espèce à l’échelle de l’Atlantique Nord-Est (ANE). Les grands dauphins du golfe 

NB forment une unique population génétique qui est composée de trois ensembles sociaux et écologiques 

distincts. Les associations entre individus semblent être influencées par l’écologie et non par les liens de parenté. 

La structure génétique du grand dauphin à l’échelle de l’ANE est hiérarchique, avec deux écotypes, l’un côtier et 

l’autre pélagique, qui sont chacun divisé en deux populations. Les populations côtières sont issues d’une 

population pélagique et auraient colonisé les habitats côtiers libérés lors de la dernière déglaciation, ce qui a 

permis la diversification de l’espèce. Cette structure semble maintenue par les spécialisations écologiques et le 

comportement social des individus. Par ailleurs, l’origine pélagique des grands dauphins du golfe NB pourrait 

expliquer certains de leurs traits sociaux. Pour conclure, les patrons de structuration à fine et à large échelles de 

ce prédateur supérieur semblent influencés par les comportements sociaux et écologiques, les conditions 

environnementales présentes et passées ainsi que par son histoire évolutive. L’absence de différences 

morphologiques marquées entre les deux écotypes pourrait s’expliquer par leur divergence relativement récente 

ou par un faible contraste entre les habitats pélagiques et côtiers dans l’ANE. Ce travail souligne l’intérêt de 

combiner de multiples approches à différentes échelles temporelles et spatiales pour comprendre la structure 

sociale et la structure de population d’espèces mobiles et cryptiques. Ces résultats ont également des 

implications majeures pour la conservation, en particulier pour la définition d’unités de gestion. 

 

Mots clés : génétique des populations, écologie, structure sociale, histoire démographique, grands dauphins 

 

Social, ecological and genetic structures of bottlenose dolphins, Tursiops 

truncatus, in the Normano-Breton gulf and in the North-East Atlantic 

 
Abstract: 

Complex interactions between environmental factors and behavioral traits may shape the fine and large scale 

structuring patterns of animal species. The objectives of this dissertation were to describe and understand i) the 

fine-scale social, ecological and genetic structures of bottlenose dolphins in the Normano-Breton (NB) gulf and 

ii) the population structure of the species at the scale of the North-East Atlantic (NEA) by combining social, 

genetic, stable isotope and morphometric approaches. Coastal bottlenose dolphins in the NB gulf form a single 

genetic population subdivided in three social and ecological clusters. Ecology but not kinship may influence 

association patterns. In the NEA, bottlenose dolphin genetic structure is hierarchical. They form two ecotypes, 

i.e. coastal and pelagic, each of them being further divided in two populations. This genetic structure was likely 

triggered by past changes in the environment (i.e. deglaciation) that created ecological opportunities for 

diversification. Ecological specializations and social behavior may maintain genetic divergence. In turn, the 

pelagic origin of bottlenose dolphins in the NB gulf may explain some of their social structure traits. Thus, an 

interaction between social and ecological behaviors, current and past environmental conditions, and evolutionary 

history may drive the fine and large scale structuring patterns of this top predator. The absence of strong 

differences in morphology between the two ecotypes may be explained by their relatively recent divergence or 

by low contrasts between the pelagic and coastal habitats in the NEA. This work highlights the power of 

combining approaches at different temporal and spatial scales for assessing the social and population structures 

of highly mobile and difficult to access species. The results have also major conservation implications especially 

for the designation of management units. 

 

Keywords: population genetics, ecology, social structure, demographic history, bottlenose dolphins 

   
CEBC (Centre d’Etudes 

Biologiques de Chizé) 

79360 Villiers-en-Bois 

 

 

LIENSs (Littoral, 

Environnement et Sociétés) 

2, rue Olympe de Gouges 

17000 La Rochelle Cedex 

 

 



 

 

 

 

 




